2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

1	Request IR-1:
2	
3	Please provide the expected retirement date for each of NSPI's owned generating assets.
4	
5	Response IR-1:
6	
7	Please refer to NSUARB IR-44.

Please refer to NSUARB IR-44.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

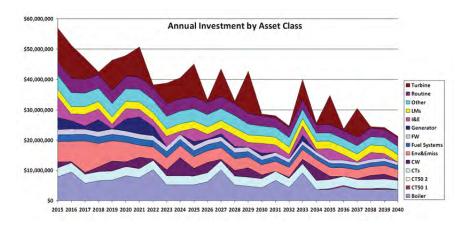
1	Request IR-2:
---	----------------------

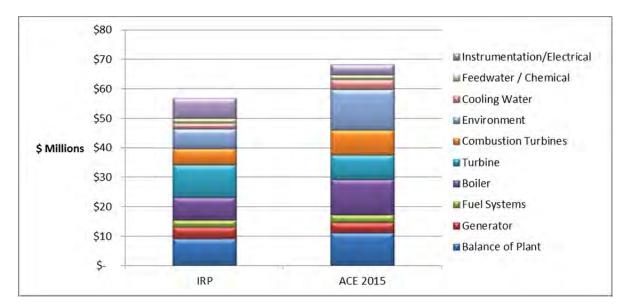
2

- 3 Please provide a summary of NSPI's current expectation of when the Maritime Link will
- 4 be placed into service and provide imported generation.
- 5
- 6 Response IR-2:
- 7
- 8 The Maritime Link is on schedule to be placed in service in Q4 of 2017.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Requ	est IR-3:	
2			
3	Pleas	e reference page 88 of Exhibit N-1, which shows that NSPI's current projections for	
4	2016 sustaining capital expenditure are about \$20 million more than predicted in the IRP,		
5	an in	crease of roughly 40%.	
6			
7	(a)	If actual capital costs continue to be about 40% higher than estimated in the IRP for	
8		the next ten years, how, if at all, would this change NSPI's generation retirement	
9		and investment strategy?	
10			
11	(b)	Please provide a similar comparison for 2015 capital spending and please include a	
12		table that provides the dollars for each category shown in the bar chart.	
13			
14	Respo	onse IR-3:	
15			
16	(a)	The IRP evaluated three retirement scenarios under different Candidate Resource Plans.	
17		Candidate Resource Planning investigated different outcomes for comparison purposes,	
18		but did not seek to determine a fully optimized plan. The IRP did not contain a	
19		sensitivity analysis for changes to sustaining capital investment. However, as discussed	
20		on Page 88 of the 2016 ACE Plan, the increase in capital investment in the 2016 ACE is	
21		largely timing differences from the assumptions in the long-term levelized sustaining	
22		capital forecast used in the IRP. The investments responsible for the difference in the	
23		ACE Plan and the long term levelized assumption of the IRP are related to assets like ash	
24		sites and combustion turbines that would be required under all Candidate Resource Plans.	
25		As the IRP was a comparative exercise, an increase as proposed would not be expected to	
26		drive significant changes in relative resource plan outcomes.	
27			
28	(b)	Please refer to Attachment 1.	


2016 ACE SBA IR-3 Attachment 1 Page 1 of 2

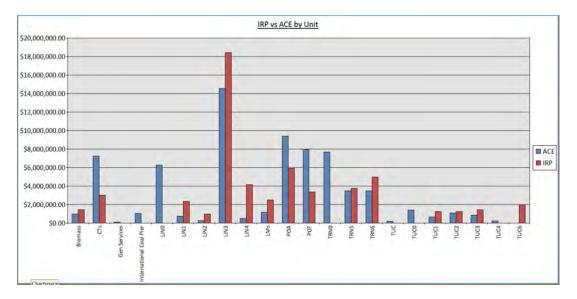

ACE 2015 – Alignment with IRP

Sustaining capital in NS Power's thermal and combustion turbine fleet is well aligned with the assumptions used throughout the 2014 Integrated Resource Plan. The capital investment included in ACE 2015 would not be expected to change no matter what resource plan is used from the 2014 IRP process.

An important consideration when comparing a singular capital year from an ACE Plan to a long term planning exercise such as the IRP is the levelling of investment done in the formation of a 25 year capital forecast used within the IRP. Outside of major asset classes (turbines, generators, etc), the investment in asset classes are levelized throughout the expected life of the associated unit.

2014 IRP Capital Forecast

2015 ACE Plan vs IRP Forecast


2016 ACE SBA IR-3 Attachment 1 Page 2 of 2

Asset Class	IRP	ACE 2015
Balance of Plant	\$9,250,000	\$11,246,083
Generator	\$3,950,000	\$3,463,321
Fuel Systems	\$2,233,750	\$2,641,308
Boiler	\$7,808,750	\$11,956,707
Turbine	\$10,925,000	\$8,361,230
Combustion Turbines	\$5,500,000	\$8,423,251
Environment	\$6,725,000	\$13,700,542
Cooling Water	\$1,962,500	\$3,464,096
Feedwater / Chemical	\$1,750,000	\$1,469,851
Instrumentation/Electrical	\$6,800,000	\$3,619,540

The following table includes the actual dollar figures used in the table above.

While ACE 2015 is higher than the IRP forecast, the variance is largely due to two items. First being investment in ash sites. As mentioned above, Ash Site investment was levelized throughout the planning period of the IRP however can be expected to have a varying amount of investment year over year. In addition to this, Ash site investment should be looked at as a sunk cost. The majority of this investment is required, and driven by regulatory requirements, even if the associated thermal plant were to be retired today. The second primary driver is investment in our Combustion Turbine fleet. Investment, originally anticipated to occur in future years, was completed in 2015. This increased investment does not have an effect on alignment with the IRP as all Combustion Turbines are anticipated to operate throughout the IRP Planning Period.

In addition to the above, the investment in the units that are anticipated to be retired within the planning period has remained consistent with IRP values. Increases from the IRP capital forecast have primarily occurred on the thermal units that will be operational throughout the Planning Period as the chart below shows.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-4:	
2		
3	Please reference pa	ages 111-112 of Exhibit N-1, which lists 2016 capital projects that directly
4	impact deteriorate	d equipment failures. What is the expected reduction in customer hours
5	of interruption from	m all of these projects?
6		
7	Response IR-4:	
8		
9	The table below ref	Ferences the 2016 capital projects outlined on pages 111-112 of Exhibit N-1,
10	with a summary of t	their expected outcomes. Rather than an overall reduction in customer hours
11	of interruption, the	routines and special projects listed below are primarily expected to result in
12	sustained reliability	performance and prevention of increased occurrence of outages.
13		
	Project	Description
		These routines are for maintaining performance and replacing like-for-
		like assets. D005 is utilized to replace or upgrade failed distribution

Routine Programs D005 and D055	like assets. D005 is utilized to replace or upgrade failed distribution equipment. D055 is utilized for proactive replacement of distribution equipment at risk of failure, based on inspections and engineering analysis.
CI 47766 70V-312G	This project improves reliability and reduces exposure for 192 customers by replacing primary conductor that has a high quantity of splices. Outages for planned maintenance for this section have occurred in the past, totaling 400 Customer Hours of Interruption.
CI 47756 36V-303 CI 47752 4S-333	There have been recent outages impacting 170 customers due to conductor failures, totaling 750 Customer Hours of Interruption. This feeder rebuild and reconfiguration will reduce outage risk for 1,020 customers due to deteriorated equipment outages, and will also improve response time by improving accessibility to sections of the line.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

Project	Description
CI 45031 and 47773 3N	This multi-phase conversion program upgrades pole-top transformers and addresses overload issues, reducing exposure for 1,730 customers. Deteriorated poles and pole-top transformers will be replaced as part of the conversion.
CI 47765 58C-405 and 11C	Replacing and reconfiguring this feeder allows for the removal of the deteriorated 11C Substation, which reduces outage exposure for 1,510 customers, including improved accessibility to the line and replacement of deteriorated poles.
CI 47774 546C-311	Replacing the step-down transformers and rebuilding the surrounding distribution plant to roadside will reduce the risk of an outage and reduces response time for 690 customers.
CI 46456 11W	The existing 4kV system in downtown Yarmouth is deteriorated and is islanded, with no ability to be supplied from the surrounding feeders (which are all 12kV) should the end-of-life 11W transformer fail. Converting the 11W feeders and transferring their load removes the risk of an extended outage to over 640 customers in the event of the 11W transformer failure, and also increases the opportunity for switching during outages.
CI 47760 85S-402	Failed insulators and failed tie wire events have resulted in over 2,500 customer interruptions and over 9,000 customer hours of interruption over the last five years.
CI 47734 1C-411	Upgrading the conductor on the targeted section of line reduces exposure of conductor failures to 760 customers. In addition, the conductor upgrade permits this feeder to carry additional load from adjacent feeders through feeder ties in the event of outages, which improves restoration time for an additional 400 customers.
CI 47754 63V-313G	This reconductor and reinsulate project reduces outage risk for 1,260 customers. Two conductor failures have occurred in the two previous years, resulting in 500 Customer Hours of Interruption.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

Project	Description
CI 43177 103W-311	The third phase of this project continues to upgrade primary conductor, reducing outage risk for 1,090 customers, and also improves accessibility to targeted sections of the line.
CI 47777 70W-321G	This project reduces outage exposure for 570 customers by bringing deteriorated plant to road side.
CI 47753 24C-442GB	This distribution line rebuild reduces the risk of conductor failure outages to 2,400 customers. In addition, bringing the line to roadside reduces restoration times by improving accessibility to the line. Recent outages have accounted for 2,600 Customer Hours of Interruption. The upgraded line will also act as an alternate supply for the Town of Canso.
CI 45003 Hydraulic Reclosers	This project replaces 7 deteriorated hydraulic reclosers on the distribution system. Approximately 9,000 Customer Hours of Interruption due to recloser failure will be avoided.
CI 41383	30% of this multi-year project is remaining for 2016. Replacing end-of- life, underground, 25kV cables and accessories will reduce extended outage risk due to cable failure for 600 downtown Halifax customers
1H-419 and 1H-431	including the Maritime Center, Ralston Building, Summit Place, Radisson Hotel, Public Works Canada, Bank of NS and many large residential buildings.
	This project installs 4 new feeders at the 2H Armdale substation to address the load growth on the Halifax peninsula, St Margaret's Bay and
CI 47787 2H	the Herring Cove Road areas. They will provide additional capacity to all of these areas, and provide new capabilities to transfer load between existing 2H feeders, 103H feeders and 104H feeders for partial restoration of customers in the event of outages.

NON-CONFIDENTIAL

1

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-5:
2	
3	In addition to the transmission and distribution right of way widening routines, please
4	identify any 2016 capital projects that are related to improving storm performance due to
5	information gathered regarding the system outages from Post Tropical Storm Arthur.
6	
7	Response IR-5:
8	
9	2016 capital projects are selected based on review of reliability data, inspection results, asset
10	management strategies and engineering analysis. Investments related directly to information
11	gathered during Post Tropical Storm Arthur are T010, D010 and CI 48254 IT Outage
12	Communication System and Enhanced Disaster Recovery.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Reque	est IR-6:
2		
3	Please	e refer to the chart on page 119 of Exhibit N-1, which shows changes in substation
4	transf	ormer age profiles:
5		
6	(a)	Why aren't the oldest transformers, those age 65+ years, being targeted for
7		replacement in 2016?
8		
9	(b)	When does NSPI plan to replace the oldest transformers?
10		
11	Respo	nse IR-6:
12		
13	(a-b)	Age is one parameter utilized to calculate the risk score for the transformer. Other
14		parameters that are also utilized are:
15		
16		• Design
17		• Manufacturing
18		• Loading
19		Maintenance Results
20		Operating Environment
21		• System Impact
22		• Reliability
23		
24		NS Power has not experienced recent reliability impacts due to its older transformers and
25		they continue to operate within acceptable limits. Transformers installed during the
26		1950s and 1960s were generally designed and constructed with conservative margins for
27		thermal and electrical stress leading to more robust equipment compared to the tighter
28		specifications of modern designs. As with other transformers, periodic inspection and
29		testing as well as preventative maintenance programs are designed to identify issues and
30		mitigate risks on older units prior to failure. As a result, capital replacements do not

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

necessarily focus solely on the oldest transformers. Other parameters are included in the
 replacement risk analysis.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

1	Request IR-7:
1	Nequest IN-/:

2

Please refer to the chart on page 122 of Exhibit N-1, which shows current transmission conductor age profiles. NSPI states that 14% of its conductor is beyond 55 years of service, but the chart shows a very low amount of conductor under 20 years of service. Why hasn't there been more replacement of transmission conductor in the past 20 years?

7

8 Response IR-7:

9

10 As with other transmission and distribution asset classes, the age of a conductor is just one of a number of contributing factors used to determine if a given line segment requires replacement. 11 12 NS Power has experienced few instances of transmission conductor failure that can be attributed solely to advanced age. As a result of the continued performance of conductor approaching 55 13 14 years of age and beyond, NS Power believes that relying on age alone to drive replacement 15 programs would lead to premature capital investment that ultimately does not contribute to 16 improved overall transmission reliability. Consequently, increased replacement of transmission 17 conductor during the past 20 years was not recommended. To improve targeting of effective 18 transmission conductor replacement, NS Power is investigating complementary assessment tools 19 to evaluate the condition of transmission conductor currently in service.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-8:
2	
3	Please provide a list of all projects where NSPI has performed an economic analysis using
4	its EAM, for which the expected payback of the project is greater than five years. For each
5	of the listed projects, has NSPI performed any sensitivity analysis of its assumed post five-
6	year escalation rate? If so, what were the results? If not, why not?
7	
8	Response IR-8:
9	
10	The following projects had an economic analysis performed that indicated a payback period of
11	greater than 5 years:
12	
13	• CI 47172 HYD Tidewater Overhaul
14	• CI 47332 HYD Methals Overhaul
15	• CI 47658 LIN4 L-0 Blade Replacement
16	• CI 47673 LIN4 Rotor Rewind
17	• CI 47869 LIN4 Bottom Ash Refurbishment
18	
19	NS Power did not perform any sensitivity analysis of the assumed post five-year escalation rate.
20	As an example, for CI 47658 LIN4 L-0 Blade Replacement, if the replacement energy costs
21	decreased by the 2% they are currently escalated at starting in 2021, the payback period of the
22	project goes from a 7.3 year to 7.5 year payback period. NS Power is confident that it would
23	require a large decrease in replacement energy costs for these projects to be deemed uneconomic.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Requ	est IR-9:
2		
3	Please	e reference Exhibit N-1.4, the electronic Revenue Requirement calculation submitted
4	with t	he 2016 ACE Plan:
5		
6	(a)	What are the numbers labeled as 'Change in Incremental Revenue Requirement
7		from Previous Year' supposed to represent? Do they represent an estimated year-
8		over-year change in revenue requirement?
9		
10	(b)	The incremental spend is calculated net of depreciation of all assets. Why is
11		depreciation subtracted again to calculate the average plant balance for purposes of
12		calculating cost of capital?
13		
14	(c)	Calculation of incremental average rate base for purposes of estimating finance
15		expense appears to be inconsistent in the table. In the first year, the initial balance is
16		zero. In other years its incremental capital from the previous year. In order to
17		calculate the change in revenue requirement from 2015, why isn't the 2016 starting
18		balance equal to the previous year's incremental capital spend?
19		
20	(d)	Why is depreciation expense multiplied by the fraction of incremental spend as a
21		portion of total spend when depreciation is a function of depreciation rate and
22		additions less retirements and not capital spend net of depreciation of all assets?
23		
24	(e)	Does NSPI assume that total Administrative Overhead, whether expensed or
25		capitalized, depends on total capital expenditure? Why or why not?
26		
27	(f)	Why is the administrative overhead credit multiplied by the fraction of incremental
28		spend as a portion of total spend when year-over-year change in the amount of
29		capitalized administrative overhead is a function of the change in total capital spend
30		year-over-year and not the change in capital spend net of depreciation of all assets?

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1		
2	(g)	Calculation of the administrative overhead appears to be inconsistent in the table.
3		In the first year, the \$12.6 million decrease to revenue requirement includes the
4		entire \$11 million administrative overhead credit. In subsequent years, the
5		difference in administrative overhead credit impacts the change in incremental
6		revenue requirement. For instance, the \$0.6 million increase in revenue requirement
7		in 2017 reflects the \$6.5 million increase in administrative overhead credit in that
8		year. In order to calculate the change in revenue requirement from 2015, why isn't
9		the change in administrative overhead credit from 2015 incorporated into the
10		calculation?
11		
12	(h)	AFUDC represents a financing cost that is only incurred to support capital
13		expenditure. How is the incremental cost of AFUDC incorporated into the revenue
14		requirement calculation? Why is AFUDC shown as a credit to revenue
15		requirement?
16		
16 17	Respo	onse IR-9:
	Respo	onse IR-9:
17	Respo	onse IR-9: The numbers labeled as 'Change in Incremental Revenue Requirement from Previous
17 18		
17 18 19		The numbers labeled as 'Change in Incremental Revenue Requirement from Previous
17 18 19 20		The numbers labeled as 'Change in Incremental Revenue Requirement from Previous Year' represent an estimated year-over-year change in revenue requirement as a result of
17 18 19 20 21		The numbers labeled as 'Change in Incremental Revenue Requirement from Previous Year' represent an estimated year-over-year change in revenue requirement as a result of the impact of the five-year capital plan. The line item labeled 'Incremental Revenue
17 18 19 20 21 22		The numbers labeled as 'Change in Incremental Revenue Requirement from Previous Year' represent an estimated year-over-year change in revenue requirement as a result of the impact of the five-year capital plan. The line item labeled 'Incremental Revenue Requirement of five-year capital plan' is the estimated revenue requirement effect of the
 17 18 19 20 21 22 23 		The numbers labeled as 'Change in Incremental Revenue Requirement from Previous Year' represent an estimated year-over-year change in revenue requirement as a result of the impact of the five-year capital plan. The line item labeled 'Incremental Revenue Requirement of five-year capital plan' is the estimated revenue requirement effect of the five year capital plan in that year. The line titled 'Change in Incremental Revenue
 17 18 19 20 21 22 23 24 		The numbers labeled as 'Change in Incremental Revenue Requirement from Previous Year' represent an estimated year-over-year change in revenue requirement as a result of the impact of the five-year capital plan. The line item labeled 'Incremental Revenue Requirement of five-year capital plan' is the estimated revenue requirement effect of the five year capital plan in that year. The line titled 'Change in Incremental Revenue Requirement from Previous Year' is calculated as the current year's incremental revenue
 17 18 19 20 21 22 23 24 25 		The numbers labeled as 'Change in Incremental Revenue Requirement from Previous Year' represent an estimated year-over-year change in revenue requirement as a result of the impact of the five-year capital plan. The line item labeled 'Incremental Revenue Requirement of five-year capital plan' is the estimated revenue requirement effect of the five year capital plan in that year. The line titled 'Change in Incremental Revenue Requirement from Previous Year' is calculated as the current year's incremental revenue requirement of the five-year capital plan less the previous year's incremental revenue
 17 18 19 20 21 22 23 24 25 26 		The numbers labeled as 'Change in Incremental Revenue Requirement from Previous Year' represent an estimated year-over-year change in revenue requirement as a result of the impact of the five-year capital plan. The line item labeled 'Incremental Revenue Requirement of five-year capital plan' is the estimated revenue requirement effect of the five year capital plan in that year. The line titled 'Change in Incremental Revenue Requirement from Previous Year' is calculated as the current year's incremental revenue requirement of the five-year capital plan less the previous year's incremental revenue
 17 18 19 20 21 22 23 24 25 26 27 	(a)	The numbers labeled as 'Change in Incremental Revenue Requirement from Previous Year' represent an estimated year-over-year change in revenue requirement as a result of the impact of the five-year capital plan. The line item labeled 'Incremental Revenue Requirement of five-year capital plan' is the estimated revenue requirement effect of the five year capital plan in that year. The line titled 'Change in Incremental Revenue Requirement from Previous Year' is calculated as the current year's incremental revenue requirement of the five-year capital plan less the previous year's incremental revenue requirement of the five-year capital plan.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

- the capital spend for this purpose. The incremental depreciation deducted from capital
 spending to determine the average plant value is the same as that included in the expenses
 portion of the tables used to calculate revenue requirement.
- 4

5 The incremental spend as a portion of total spend is calculated by deducting the 6 forecasted depreciation expense of all NS Power's assets, including those added in 7 previous years, from the forecasted capital expenditures to determine the portion of 8 expenditures that should be considered growth above the existing asset base. The 9 depreciation expense related to all assets is only used to calculate the incremental spend 10 as a portion of total spend, depreciation expense of all assets is not included in the 11 expenses section used to calculate the revenue requirement.

12

13 (c) The intent of these tables is to determine the revenue requirement impact of the 14 forecasted five-year capital plan. At the start of 2016, there would be a \$0 forecasted 15 beginning balance of capital assets related to the five-year forecast. If the beginning 16 balance was the previous year's ending balance of incremental regulated capital assets, 17 financing costs related to capital assets that are not included in the five-year capital plan 18 would be considered in the calculation of revenue requirement.

19

20 (d) Depreciation expense is calculated by multiplying depreciation rates by the forecasted 21 balance of assets in service related to the five-year plan. This calculated depreciation 22 expense is then multiplied by the incremental spend as a portion of total spend as that is 23 the portion of depreciation that would be attributed to the growth in rate base or is above 24 sustaining investment in NS Power's capital assets. The assumption is that if investment 25 is at the same level as depreciation, there will be no net increase in expenses or savings 26 for customers as NS Power is simply maintaining its current asset base. This is a 27 conservative assumption as most of the assets that are being replaced would be 20 years 28 or older and replacement assets would cost more due to inflation. If the incremental 29 spend as a portion of total spend was not applied to total depreciation expense, the effect 30 of decreased depreciation related to the retirement of previously installed assets would

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1		not be considered, overstating the incremental revenue requirement impact calculated in
2		these tables.
3		
4	(e)	NS Power assumes that the support costs required to execute its capital program do not
5		vary when the capital program stays within the normal range for the Company. The
6		portion of these support costs that would be capitalized as administrative overhead (AO)
7		vs. expensed as Operating, Maintenance and General (OM&G) costs would vary
8		depending upon the ratio of capital and operating work that is undertaken in the year.
9		
10		NS Power assumes that the support costs remain constant as staffing and other OM&G
11		costs do not vary significantly as a result of a year-to-year variance in the expected
12		capital spending. If there were a large increase in capital spending in a given year, NS
13		Power may contract an increased amount of this work out to external vendors or hire
14		additional term employees. All of these costs would be directly charged to the capital
15		projects they were associated with and would not be included in the support costs that are
16		allocated between AO and OM&G.
17		
18		If there was a year with a significantly lower capital spend, the assumption is that NS
19		Power's support costs would not vary significantly provided spend was expected to return
20		to the normal range in the following year. The reduction in capital spend would result in
21		less work contracted to external vendors and a lower number of term employees, these
22		decreased charges would be related to direct capital costs and not the support costs used
23		to calculate AO.
24		
25	(f)	AO is calculated by multiplying the forecasted total capital spend by the forecasted ratio
26		of AO to total capital spend. This calculated AO is then multiplied by the incremental
27		spend as a portion of total spend as that is the portion of depreciation that would be
28		attributed to the growth in rate base or is above sustaining investment in NS Power's
29		capital assets. Similar to depreciation expense, AFUDC and capital cost allowance, only
30		the portion of AO related to the spending in excess of that which maintains the asset base

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1		is included in the calculation of incremental revenue requirement. Including the entire
2		amount of the AO credit would understate the incremental revenue requirement impact of
3		the five-year capital plan.
4		
5	(g)	The AO credit is treated consistently in the calculation of the 'Incremental Revenue
6		Requirement of five-year capital plan' in each year. The change in 'Incremental Revenue
7		Requirement from Previous Year' is calculated as the current year's incremental revenue
8		requirement of the five-year capital plan less the previous year's incremental revenue
9		requirement of the five-year capital plan.
10		
11		The intent of these tables is to determine the revenue requirement impact of the
12		forecasted five-year capital plan. A column for the year 2015 is not included as the
13		forecasted five-year capital plan being evaluated runs from 2016-2020.
14		
15	(h)	AFUDC is a mechanism that defers the financing costs of building an asset so that these
16		costs are recovered over the life of the asset. AFUDC is incurred while the project is
17		considered construction work in progress and ceases once the asset becomes used and
18		useful. These financing costs are then recovered over the life of the associated assets in
19		order to "match" the costs to the periods in which the assets are providing benefit.
20		
21		The financing costs that are incurred in support of building the assets is reflected in both
22		interest expense and net earnings as NS Power's capital is financed by a combination of
23		debt and equity. The AFUDC is an offsetting credit that reflects the fact that customers
24		do not begin to pay for these financing costs until the assets become operational. These
25		financing costs are then reflected as an increase to depreciation expense over the life of
26		the associated assets.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

1	Request	IR-10:
1	nequest	111-10-

2

- 3 Please refer to page 56 of Exhibit N-1 showing a table of routine capital spending year-
- 4 over-year. Given the large increases in transmission and distribution right-of-way widening
- 5 investment, why does NSPI continue to classify this work as routine?
- 6

```
7 Response IR-10:
```

- 8
- 9 Please refer to NSUARB IR-35(a).

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-11:
2	
3	Please provide an updated 69kV Transmission Right-of-Way Widening Plan and explain
4	all differences from Exhibit A-25 filed in M06321.
5	
6	Response IR-11:
7	
8	Please refer to Attachment 1, also provided electronically, for the updated 69kV Transmission
9	Right-of-Way Widening Plan which includes the AO rates.
10	
11	The only change from the Exhibit A-25 submission in M06321 is the inclusion of administrative
12	overhead (AO) costs for labour, contracts and vehicles. This is a change in the base cost per year
13	from \$4.5 million to \$5.4 million, for a total of \$43.2 million (including AO) over 8 years.

2016 ACE SBA IR-11 Attachment 1 Page 1 of 1

69kV Transmission Right-of-Way Widening Plan

Year	Line	Structure Type	Priority Group	Total Length (km)	Total Forested Edge ³ (km)	Total Widening Length (km)	New RoW Width (m)	Cost per Kilometre	RoW Widening Costs	Total Adjacent Properties	Estimated Easement Costs ⁶	Total Widening Costs	Total Cost Per Year	Administrative Overhead (20.68%)	Total Cost with AO
2016	L-5023	H-Frame	A	1.2	0.36	0.72	40	\$ 12,800	\$ 9,167	4	\$ 6,136	\$ 15,303			
2016	L-5024	H-Frame	A	4.7	3.40	6.80	40	\$ 12,800	\$ 87,040	47	\$ 72,098	\$ 159,138			
2016	L-5039	H-Frame	A	9.52	4.60	9.20	40	\$ 12,800	\$ 117,760 \$ 057,440	17	\$ 26,078	\$ 143,838	¢ 4 524 020	¢ 027.022	¢ = 470.750
2016 2016	L-5040 L-5054	H-Frame H-Frame	A A	42.3 23.4	37.40 21.00	74.80 42.00	40 40	\$ 12,800 \$ 12,800	\$ 957,440 \$ 537,600	123 193	\$ 188,682 \$ 296,062	\$ 1,146,122 \$ 833,662	\$ 4,534,929	\$ 937,823	\$ 5,472,753
2016	L-5502	H-Frame	A	6.1	5.44	10.88	40	\$ 12,800 \$ 12,800	\$ 139,292	39	\$ 290,002 \$ 59,826	\$ 199,118			
2016	L-5510	H-Frame	A	71.1	63.90	127.80	40	\$ 12,800	\$ 1,635,840	262	\$ 401,908	\$ 2,037,748			
2017	L-5521	H-Frame	A	4.5	0.65	1.30	40	\$ 12,800	\$ 16,624	30	\$ 46,020	\$ 62,644			
2017	L-5524	H-Frame	A	35.4	29.00	58.00	40	\$ 12,800	\$ 742,400	75	\$ 115,050	\$ 857,450			
2017	L-5550	H-Frame	Α	33.7	18.95	37.90	40	\$ 12,800	\$ 485,136	132	\$ 202,488	\$ 687,624			
2017	L-5559	H-Frame	A	38.7	32.80	65.60	40	\$ 12,800	\$ 839,680	224	\$ 343,616	\$ 1,183,296	\$ 4,448,916	\$ 920,036	\$ 5,368,951
2017	L-5037	H-Frame	В	3.7	3.57	7.14	40	\$ 12,800	\$ 91,455	22	\$ 33,748	\$ 125,203	¢ .,	¢ 020,000	¢ 0,000,001
2017	L-5055	H-Frame	B	20.8	17.00	34.00	40	\$ 12,800	\$ 435,200	45	\$ 69,030	\$ 504,230			
2017	L-5555	H-Frame	B	15.5	11.12	22.24	40	\$ 12,800 \$ 12,800	\$ 284,646 \$ 205,280	134	\$ 205,556 \$ 332,878	\$ 490,202 \$ 538,267			
2017 2018	L-5025 L-5017	H-Frame H-Frame	C C	30.2 18.4	8.02 13.11	16.05 26.22	40 40	\$ 12,800 \$ 12,800	\$ 205,389 \$ 335,640	217 179	\$ 332,878 \$ 274,586	\$ 538,267 \$ 610,226			
2018	L-5053	H-Frame	C	25.7	20.70	41.40	40	\$ 12,800 \$ 12,800	\$ 529,920	240	\$ 274,380 \$ 368,160	\$ 898,080			
2018	L-5500	H-Frame	C	12.5	8.36	16.71	40	\$ 12,800	\$ 213,935	88	\$ 134,992	\$ 348,927			
2018	L-5501	H-Frame	C	7.6	1.80	3.60	40	\$ 12,800	\$ 46,111	39	\$ 59,826	\$ 105,937			
2018	L-5534	H-Frame	C	8.4	6.22	12.44	40	\$ 12,800	\$ 159,244	79	\$ 121,186	\$ 280,430			
2018	L-5564	H-Frame	C	19.1	11.23	22.45	40	\$ 12,800	\$ 287,411	79	\$ 121,186	\$ 408,597	¢ / EEC / / F	¢ 040.070	¢ E 400 740
2018	L-5572	H-Frame	С	13.6	8.40	16.80	40	\$ 12,800	\$ 215,040	131	\$ 200,954	\$ 415,994	\$ 4,556,445	\$ 942,273	\$ 5,498,718
2018	L-5573	H-Frame	С	15.8	9.90	19.80	40	\$ 12,800	\$ 253,440	158	\$ 242,372	\$ 495,812			
2018	L-5022	H-Frame	D	15.0	11.10	22.20	40	\$ 12,800	\$ 284,160	29	\$ 44,486	\$ 328,646			
2018	L-5019	H-Frame	D	3.4	3.10	6.20	40	\$ 12,800	\$ 79,360	6	\$ 9,204	\$ 88,564			
2018	L-5028	H-Frame	D	29.0	15.15	30.30	40	\$ 12,800	\$ 387,822	74	\$ 113,516	\$ 501,338			
2018	L-5035	H-Frame	D	0.8	0.61	1.22	40	\$ 12,800	\$ 15,602	38	\$ 58,292	\$ 73,894			
2019	L-5026	H-Frame	C D	47.5	19.16	38.32	40	\$ 12,800	\$ 490,555 \$ 140,602	204	\$ 312,936	\$ 803,491			
2019 2019	L-5003 L-5004	H-Frame H-Frame	D	13.5 12.1	5.85 6.90	11.69 13.80	40 40	\$ 12,800 \$ 12,800	\$ 149,692 \$ 176,640	114 37	\$ 174,876 \$ 56,758	\$ 324,568 \$ 233,398			
2019	L-5004 L-5011	H-Frame	D	9.3	5.20	10.40	40	\$ 12,800 \$ 12,800	\$ 133,120	35	\$ 53,690	\$ 233,396 \$ 186,810			
2019	L-5029	H-Frame	D	20.2	16.23	32.47	40	\$ 12,800 \$ 12,800	\$ 415,603	83	\$ 127,322	\$ 542,925			
2019	L-5031	H-Frame	D	19.8	19.45	38.90	40	\$ 12,800	\$ 497,977	95	\$ 145,730	\$ 643,707	\$ 4,500,949	\$ 930,796	\$ 5,431,745
2019	L-5047	H-Frame	D	3.1	0.20	0.39	40	\$ 12,800	\$ 5,014	10	\$ 15,340	\$ 20,354	+ .,,	+,	+ -,,
2019	L-5048	H-Frame	D	5.5	4.37	8.75	40	\$ 12,800	\$ 111,970	65	\$ 99,710	\$ 211,680			
2019	L-5058	H-Frame	D	39.3	33.40	66.80	40	\$ 12,800	\$ 855,040	115	\$ 176,410	\$ 1,031,450			
2019	L-5505	H-Frame	D	11.5	9.10	18.20	40	\$ 12,800	\$ 232,960	83	\$ 127,322	\$ 360,282			
2019	L-5537	H-Frame	D	3.4	3.22	6.44	40	\$ 12,800	\$ 82,457	39	\$ 59,826	\$ 142,283			
2020	L-5539	H-Frame	D	8.4	5.44	10.87	40	\$ 12,800	\$ 139,150	88	\$ 134,992	\$ 274,142			
2020	L-5548	H-Frame	D	17.1	4.46	8.91	40	\$ 12,800		57	\$ 87,438				
2020	L-5551	H-Frame	D	9.7	6.23	12.46	40	\$ 12,800		94	\$ 144,196	\$ 303,702			
2020	L-5571	H-Frame	D	6.4	3.80	7.59	40	\$ 12,800		34	\$ 52,156				
2020 2020	L-5575 L-5579	H-Frame H-Frame	D D	12.6 41.1	8.20 38.50	16.40 77.00	40 40	\$ 12,800 \$ 12,800		75 305	\$ 115,050 \$ 467,870	\$ 324,913 \$ 1,453,470			
2020	L-5044	Single Pole	A	3.8	3.37	6.75	30	\$ 12,000		44	\$ 407,870 \$ 67,496	\$ 1,433,470 \$ 142,194	\$ 4,436,503	\$ 917,469	5,353,972
2020	L-5506	Single Pole	A	8.4	4.41	8.82	30	\$ 11,070		97	\$ 148,798	\$ 246,402	ф I, 100,000	¢ 011,100	0,000,012
2020	L-5511	Single Pole	Α	31.7	28.00	56.00	30	\$ 11,070		130	\$ 199,420	\$ 819,340			
2020	L-5533	Single Pole	A	13.1	7.86	15.71	30	\$ 11,070		89	\$ 136,526	\$ 310,482			
2020	L-5538	Single Pole	A	7.5	4.67	9.34	30	\$ 11,070	\$ 103,412	44	\$ 67,496	\$ 170,908			
2020	L-5036	Single Pole	В	3.4	0.11	0.22	30	\$ 11,070		5	\$ 7,670	\$ 10,099			
2020	L-5508	Single Pole	В	1.7	0.52	1.05	30	\$ 11,070		12	\$ 18,408	\$ 29,989			
2021	L-5014	Single Pole	A	10.8	2.67	5.34	30	\$ 11,070		19	\$ 29,146	\$ 88,263			
2021	L-5033	Single Pole	A	12.2	6.70	13.40	30	\$ 11,070 \$ 11,070		57	\$ 87,438 \$ 46,020	\$ 235,776 \$ 72,400			
2021 2021	L-5046 L-5545	Single Pole Single Pole	A A	2.7 5.2	1.19 2.67	2.38 5.34	30 30	\$ 11,070 \$ 11,070		30 53	\$ 46,020 \$ 81,302	\$ 72,400 \$ 140,419			
2021	L-5546	Single Pole	A	12.5	6.87	13.75	30	\$ 11,070 \$ 11,070		128	\$ 196,352	\$ 140,419 \$ 348,553	\$ 4,452,524	\$ 920,782	\$ 5,373,305
2021	L-5565	Single Pole	A	18.9	16.80	33.60	30	\$ 11,070 \$ 11,070	\$ 371,952	120	\$ 162,604	\$ 534,556	, ., .o <u>_</u> ,o <u>_</u> t	, 010,102	\$ 5,6.5,000
2021	L-5027	Single Pole	C	104.5	92.30	184.60	30	\$ 11,070	\$ 2,043,522	255	\$ 391,170	\$ 2,434,692			
2021	L-5561A	Single Pole	C	15.0	11.22	22.44	30	\$ 11,070	\$ 248,383	105	\$ 161,070	\$ 409,453			
2021	L-5016	Single Pole	D	6.7	5.60	11.20	30	\$ 11,070		42	\$ 64,428	\$ 188,412			
2022	L-5015	Single Pole	A	19.0	15.90	31.80	30	\$ 11,070	\$ 352,026	87	\$ 133,458	\$ 485,484			
2022	L-5021	Single Pole	A	7.2	5.20	10.40	30	\$ 11,070		56	\$ 85,904	\$ 201,032			
2022	L-5020	Single Pole	D	9.2	8.90	17.80	30	\$ 11,070		51	\$ 78,234	\$ 275,280			
2022	L-5030	Single Pole	D	2.9	0.71	1.41	30	\$ 11,070		8	\$ 12,272	\$ 27,919	• • • • • • • • • • • • • • • • • •		
2022	L-5056	Single Pole	D	4.0	3.10	6.20	30	\$ 11,070		14	\$ 21,476	\$ 90,110	\$ 4,546,020	\$ 940,117	\$ 5,486,137
2022	L-5057	Single Pole	D	2.2	1.35	2.71	30	\$ 11,070 \$ 11,070		5	\$ 7,670 \$ 70,769	\$ 37,665 \$ 205,066			
2022	L-5512	Single Pole	D	6.5	5.70	11.40	30	\$ 11,070 \$ 11,070		52	\$ 79,768 \$ 136,526	\$ 205,966 \$ 581,540			
2022 2022	L-5531 L-5532	Single Pole Single Pole	D D	23.9 96.3	20.10 87.00	40.20 174.00	30 30	\$ 11,070 \$ 11,070		89 466	\$ 136,526 \$ 714,844	\$ 581,540 \$ 2,641,024			
2022	L-5532 L-5050	Single Pole	D	96.3 15.9	15.40	30.80	30	\$ 11,070 \$ 11,070	\$ 340,956	400 54	\$ 714,844 \$ 82,836	\$ 2,641,024 \$ 423,792			
2023	L-5530	Single Pole	D	67.5	39.40	78.80	30	\$ 11,070 \$ 11,070		155	\$ 237,770	\$ 1,110,086			
2023	L-5535	Single Pole	D	64.3	58.30	116.60	30	\$ 11,070 \$ 11,070		420	\$ 644,280	\$ 1,935,042	\$ 4,512,412	\$ 933,167	\$ 5,445,578
2023	L-5536	Single Pole	D	20.2	12.49	24.99	30	\$ 11,070	\$ 276,632	170	\$ 260,780	\$ 537,412			
		Single Pole	D	19.5	10.94	21.88	30	\$ 11,070	\$ 242,231	172	\$ 263,848	\$ 506,079			
2023	L-5547	Single I ble													

Notes:

1. Assume that all properties are less than one acre (based upon sample size).

2. Assume that the land on both sides of the right-of-way is on one property.

3. Assume linear km of right-of-way with forested edge (2 sided).

4. Assume that the Land Agent does not have to make repeated visits to negoiate settlement.

5. Assume for properties > 1 acre, the costs of the easements will not exceed \$0.25M.

6. Assume average total of \$1,534 per property for Estimated Easement Costs: includes an average of \$1,005 per acre for land easements, plus \$82.50/hr for Land Agent assessment for an average of 6 hours per property, plus an average of \$34 per property for land valuation for a project of this magnitude.

7. Transmission lines can be re-prioritized within a planned year based upon additional criteria of operational efficiencies and line performance.

8. Transmission lines may span multiple years in the work plan

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

1 Request IR-12:

2

3 Please refer to page 64 of Exhibit N-1, which lists a total of \$5.4 million in 69 kV 4 transmission right-of-way widening, whereas page 65 of the same document states actual 5 widening for 69kV right-of-ways is \$4.5 million. Exhibit A-25 filed in M06321 also 6 references \$4.5 million in annual right-of-way widening expenditure. Please explain the 7 reason for the increased expenditure.

8

9 Response IR-12:

10

11 As stated in SBA IR-11 and noted on page 65 of the 2016 ACE Plan, the difference in the annual

totals is due to administrative overhead (AO). The \$4.5 million per year included in Exhibit A25 filed in M06321 did not include AO amounts as the analysis was focused on straight

14 contractor widening costs. Once AO is included, the cost per year is \$5.4 million for 8 years to

15 widen all of the 69kV transmission rights-of-way in the province.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

Request IR-13:
Please refer to page 72 of Exhibit N-1. Please define in detail the scope of the annual \$10.4
million figure for vegetation management.
Response IR-13:
The scope of the annual vegetation management program is described in the table below. This
amount includes the \$3 million in the Distribution Right-of-Way Routine (D010), as those
projects will establish new rights-of-way beyond the current width. The 69kV Right-of-Way
Widening routine is not included in these totals as that \$5.4 million project is above and beyond
the base vegetation program.

	2016 (\$)	Financial
Reactive Tree Trimming (Distribution)	350,000	Operating
Preventative Veg Management (Distribution)	1,750,000	Operating
Urban Cycle (Distribution)	500,000	Operating
Sustainable (Distribution)	500,000	Operating
Hazard Tree Removal (Distribution)	500,000	Operating
Customer Requested (Distribution)	1,000,000	Operating
ROW Widening/Establishment (Distribution)	3,000,000	Capital
Distribution Subtotal	7,600,000	
Veg Management & Sustainable (Transmission)	2,800,000	Operating
Total Vegetation Management	10,400,000	

14

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Reque	est IR-14:									
2											
3	Please provide a list of all of Nova Scotia's generating units greater than 10 MW in										
4	capacity with each unit's:										
5											
6	(a)	Summer and Winter capacity									
7											
8	(b)	Fuel type									
9											
10	(c)	Annual capacity factor for the past 3 calendar years									
11											
12	(d)	Full load heat rate									
13											
14	Respo	nse IR-14:									
15											
16	(a-d)	Please refer to Attachment 1, also provided electronically.									

2016 ACE SBA IR-14 Attachment 1 Page 1 of 1

		A	7)	B)		C)		D)
Unit	Туре	Summer Capacity (MW)	Winter Capacity (MW)	Fuel Type	Capacity Factor 2013	Capacity Factor 2014	Capacity Factor 2015	Full Load Heat Rate
Tufts Cove 1	Thermal	81	81	Nat Gas/HFO	18%	37%	23%	10711
Tufts Cove 2	Thermal	93	93	Nat Gas/HFO	25%	51%	39%	10668
Tufts Cove 3	Thermal	147	147	Nat Gas/HFO	44%	26%	41%	10230
Pt. Aconi 1	Thermal	171	171	Coal	81%	72%	76%	10591
Lingan 1	Thermal	153	153	Coal	65%	52%	52%	10237
Lingan 2	Thermal	153	153	Coal	59%	50%	29%	10246
Lingan 3	Thermal	153	153	Coal	56%	34%	40%	10190
Lingan 4	Thermal	153	153	Coal	69%	60%	58%	10037
Trenton 5	Thermal	135	150	Coal	48%	59%	59%	9993
Trenton 6	Thermal	157	157	Coal	80%	82%	78%	10007
Pt. Tupper 2	Thermal	152	152	Coal	61%	77%	74%	9855
Burnside 1	Combustion Turbines	24.9	30.1	HFO	0.3%	1.1%	1.2%	11678
Burnside 2	Combustion Turbines	24.9	30.5	HFO	0.6%	1.1%	1.3%	11678
Burnside 3	Combustion Turbines	24.9	30.0	HFO	0.5%	0.1%	0.5%	11678
Burnside 4	Combustion Turbines	24.9	30.0	HFO	0.0%	0.0%	0.0%	11678
Victoria Junction 1	Combustion Turbines	24.9	30.1	HFO	0.0%	0.1%	0.1%	11678
Victoria Junction 2	Combustion Turbines	24.9	30.0	HFO	0.1%	0.1%	0.0%	11678
Tusket	Combustion Turbines	24.9	23.8	HFO	0.1%	0.1%	0.0%	13435
Tufts Cove 4	Combustion Turbines	49.5	49	Nat Gas	46%	50%	49%	9826
Tufts Cove 5	Combustion Turbines	49.5	49	Nat Gas	45%	54%	50%	9826
Tufts Cove 6	Heat Recovery	50.8	50.8	Combined Cycle	23%	32%	23%	8256
Wreck Cove 1	Hydro	106	106	Hydro	23%	22%	17%	-
Wreck Cove 2	Hydro	106	106	Hydro	12%	14%	14%	-
Port Hawkesbury	Biomass	45	45	Wood Product			41%	-
Annapolis	Hydro	19	19	Hydro	9%	9%	8%	-
Lequille	Hydro	11.2	11.2	Hydro	27%	36%	27%	-

*New engine (installed in 2013) in Tusket is yet to be tested, however its capacity is expected to be the same as the other combustion turbine units.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

CONFIDENTIAL (Attachment Only)

1	Requ	est IR-15:
2		
3	For e	ach generating unit modeled in NSPI's EAM, please provide the following:
4		
5	(a)	Expected delivered fuel cost in \$/MMBtu for the next five years
6		
7	(b)	Estimated total full load dispatch cost for the next five years
8		
9	Respo	onse IR-15:
10		
11	(a)	Please refer to Partially Confidential Attachment 1, also provided electronically.
12		
13	(b)	This information cannot be provided as the estimated total full load dispatch cost will
14		depend on the fuel blend for each unit. This information is not used within the EAM.

REDACTED 2016 ACE SBA IR-15 Attachment 1 Page 1 of 2

Unit	Fuel Type		Delivered F	rice (\$/MN	1Btu)	
Onit	гиегтуре	2016	2017	2018	2019	2020
Lingan 1	LS-HBTU					
Lingan 1	LS-LBTU					
Lingan 1	MS					
Lingan 1	PC6					
Lingan 1	PRB					
Lingan 2	LS-HBTU					
Lingan 2	LS-LBTU					
Lingan 2	MS					
Lingan 2	PC6					
Lingan 2	PRB					
Lingan 3	LS-HBTU					
Lingan 3	LS-LBTU					
Lingan 3	MS					
Lingan 3	PC6					
Lingan 3	PRB					
Lingan 3	LS-HBTU					
Lingan 4	LS-LBTU					
Lingan 4	MS					
Lingan 4	PC6					
Lingan 4	PRB					
Point Aconi	LS-LBTU					
Point Aconi	PC6					
Point Aconi	PRB					
Point Tupper	LS-HBTU					
Point Tupper	LS-LBTU					
Point Tupper	MS					
Point Tupper	PC6					
Point Tupper	PRB					
Trenton 5	LS-HBTU					
Trenton 5	LS-LBTU					
Trenton 5	MS					
Trenton 6	LS-HBTU					
Trenton 6	LS-LBTU					
Trenton 6	MS					
Trenton 6	PC6					
Trenton 6	NOVA					

	Legend
LS-HBTU	Low Sulphur - High BTU
LS-LBTU	Low Sulphur - Low BTU
MS	Mid Sulphur
PC6	Pet Coke
PRB	Powder River Basin
NOVA	Nova Coal

REDACTED 2016 ACE SBA IR-15 Attachment 1 Page 2 of 2

	ve I - 0	Natural Gas Price	HFO Price
Year	Month	(\$/MMBtu)	(\$/MMBtu)
2016	1	(0) 111115(0)	(¢/ minibia)
2016	2		
2016	3		
2016	4		
2016	5		
2016	6		
2016	7		
2016	8		
2016	9		
2016	10		
2016	11		
2016	12		
2017	1		
2017	2		
2017	3		
2017	4		
2017	5		
2017	6		
2017	7		
2017	8		
2017	9		
2017	10		
2017	11		
2017	12		
2018	1		
2018	2		
2018	3		
2018	4		
2018	5		
2018	6		
2018	7		
2018	8		
2018	9		
2018	10		
2018	11		
2018	12		
2019	1		
2019	2		
2019	3		
2019	4		
2019	5		
2019	6		
2019	7		
2019	8		
2019	9		
2019	10		
2019	11		
2019	12		
2020	1		
2020	2 3		
2020 2020	3 4		
2020	4 5		
2020	5		
2020	7		
2020	8		
2020	9		
2020	10		
2020	10		
2020	12		

Tufts Cove 1 - 6

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-16:		
2			
3	Pleas	e describe how the replacement energy cost assumptions used in the EAM for the 2016	
4	ACE Plan were derived. Please describe all changes from the replacement cost assump		
5	used i	n the EAMs filed in support of the 2015 ACE Plan.	
6			
7	Respo	onse IR-16:	
8			
9	Repla	cement Energy Costs (REC) for 2016-2020 were calculated based on Plexos simulations,	
10	witho	ut PHP load, completed in Q1 2015.	
11			
12	The R	EC methodology consists of the following steps:	
13			
14	(1)	For each thermal unit, as well as imports, monthly average cost (\$/MWh) and monthly	
15		total output (GWh) are compiled from the Plexos simulation outputs.	
16			
17	(2)	Energy-weighted average prices for the summer (April 1 - October 31) and winter	
18		(November 1 - March 31) periods are calculated for each thermal unit, as well as	
19		imports.	
20			
21	(3)	For each unit or unit grouping for which a REC is needed, a calculation is performed to	
22		find the difference in seasonal energy-weighted average production cost between the unit	
23		itself and the energy-weighted average of the unit(s) that are eligible to replace that	
24	energy, under normal system dispatch conditions. Specifically:		
25			
26		(a) <u>Coal units:</u> Energy from these units can be replaced by any other generating unit,	
27		except those that are fully dispatched (defined as having a forecasted net capacity	
28		factor greater than 70 percent). For the purpose of this calculation, the four	
29		Lingan units are combined into a single energy-weighted average.	
30			

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1		(b)	Tufts Cove Combined Cycle (CC): Energy from these units can be replaced by
2			Tufts Cove steam units and diesel CTs in the winter, and by Tufts Cove steam
3			units as well as imports in the summer (winter transmission constraints limit the
4			ability of imports to offset Tufts Cove generation).
5			
6		(c)	Tufts Cove Steam units: Energy from these units can be replaced by other Tufts
7			Cove steam units and diesel CTs in the winter; imports are also available in the
8			summer. It is assumed that Tufts Cove CC unit is already fully dispatched if TUC
9			steam energy is required; therefore the CC is not an eligible replacement unit.
10			
11		(d)	Diesel Combustion Turbines: If diesel CT energy is required, it is assumed that
12			all other energy sources on the system are fully dispatched or unavailable.
13			Therefore this energy can be replaced by an equivalent import from NB, plus
14			three percent to account for transmission losses from NB border to NS load
15			centre.
16			
17		(e)	Hydro: Hydro generation can be replaced by any other dispatchable generator on
18			the system, other than those that are fully dispatched (defined as having a
19			forecasted capacity factor greater than 70 percent).
20			
21	(4)	The se	easonal replacement energy costs calculated in step 3 for each unit or unit grouping
22		are th	en combined into a single annual value by taking the energy-weighted average of
23		the su	mmer and winter values. These annual costs are then input to the EAM model.
24			
25		The 2	016 ACE Plan REC for hydro has been updated and is now calculated from annual
26		hydro	generation provided from the Plexos results rather than the sum of all generation,
27		which	was used in the 2015 ACE Plan. 2015 ACE Plan replacement energy costs were
28		based	on average marginal costs, while 2016 replacement energy costs were based on
29		averag	ge cost of production. Due to larger quantity of wind generation in 2016 and
30		declin	ing system load, average marginal costs that were used in 2015 ACE Plan REC

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

were not suitable for the 2016 forecast due to additional low load wind curtailment and
 wind integration operational effects on marginal costs.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

CONFIDENTIAL (Attachment Only)

1	Requ	iest	IR-	17:
1	Muqu	COL	11/-	1/.

2

- Please provide any natural gas price assumptions relied upon to generate replacement
 energy cost estimates for the EAM used to support the 2016 ACE Plan.
- 5

6 Response IR-17:

7

8 Please refer to Partially Confidential Attachment 1, also provided electronically.

REDACTED 2016 ACE SBA IR-17 Attachment 1 Page 1 of 7

Natural Gas Prices used in Replacement Energy Costs Plexos Model

Date From	Price (\$/MMBTU)
01/01/2016	
02/01/2016	
03/01/2016	
04/01/2016	
05/01/2016 06/01/2016	
07/01/2016	
08/01/2016	
09/01/2016	
10/01/2016	
11/01/2016	
12/01/2016	
13/01/2016	
14/01/2016	
15/01/2016	
16/01/2016	
17/01/2016	
18/01/2016	
19/01/2016	
20/01/2016	
21/01/2016	
22/01/2016	
23/01/2016	
24/01/2016	
25/01/2016	
26/01/2016	
27/01/2016	
28/01/2016	
29/01/2016	
30/01/2016	
31/01/2016	
01/02/2016	
02/02/2016	
03/02/2016	
04/02/2016	
05/02/2016	
06/02/2016 07/02/2016	
08/02/2016	
09/02/2016	
10/02/2016	
11/02/2016	
12/02/2016	
13/02/2016	
14/02/2016	
15/02/2016	
16/02/2016	
17/02/2016	
18/02/2016	
19/02/2016	
20/02/2016	
21/02/2016	
22/02/2016	
23/02/2016	
21/02/2016	

24/02/2016 25/02/2016 26/02/2016 27/02/2016 28/02/2016 29/02/2016 01/03/2016 01/04/2016 01/05/2016 01/06/2016 01/07/2016 01/08/2016 01/09/2016 01/10/2016 01/11/2016 01/12/2016 02/12/2016 03/12/2016 04/12/2016

REDACTED 2016 ACE SBA IR-17 Attachment 1 Page 2 of 7

Date From	Price (\$/MMBTU)
05/12/2016	
06/12/2016	
07/12/2016	
08/12/2016	
09/12/2016	
10/12/2016	
11/12/2016	
12/12/2016	
13/12/2016	
14/12/2016	
15/12/2016	
16/12/2016	
17/12/2016	
18/12/2016	
19/12/2016	
20/12/2016	
21/12/2016	
22/12/2016	
23/12/2016	
24/12/2016	
25/12/2016	
26/12/2016	
27/12/2016	
28/12/2016	
29/12/2016	
30/12/2016	
31/12/2016	
01/01/2017	
02/01/2017	
03/01/2017	
04/01/2017	
05/01/2017	
06/01/2017	
07/01/2017	
08/01/2017	
09/01/2017	
10/01/2017	
11/01/2017	
12/01/2017	
13/01/2017	
14/01/2017	
15/01/2017	
16/01/2017	
17/01/2017	
18/01/2017	
19/01/2017	
20/01/2017	
21/01/2017	
22/01/2017	
23/01/2017	
24/01/2017	
25/01/2017	
26/01/2017	
27/01/2017 28/01/2017	
28/01/2017 29/01/2017	
30/01/2017	
JU/U1/2U1/	

30/01/2017 31/01/2017 01/02/2017 02/02/2017 03/02/2017 04/02/2017 05/02/2017 06/02/2017 07/02/2017 08/02/2017 09/02/2017 10/02/2017 11/02/2017 12/02/2017 13/02/2017 14/02/2017 15/02/2017 16/02/2017 17/02/2017

REDACTED 2016 ACE SBA IR-17 Attachment 1 Page 3 of 7

Date From	Price (\$/MMBTU)
18/02/2017	
19/02/2017	
20/02/2017	
21/02/2017	
22/02/2017	
23/02/2017	
24/02/2017	
25/02/2017	
26/02/2017	
27/02/2017	
28/02/2017	
01/03/2017	
01/04/2017	
01/05/2017	
01/06/2017	
01/07/2017	
01/08/2017	
01/09/2017	
01/10/2017	
01/11/2017	
01/12/2017	
02/12/2017	
03/12/2017	
04/12/2017	
05/12/2017	
06/12/2017	
07/12/2017	
08/12/2017	
09/12/2017	
10/12/2017	
11/12/2017	
12/12/2017	
13/12/2017	
14/12/2017	
15/12/2017	
16/12/2017	
17/12/2017	
18/12/2017	
19/12/2017	
20/12/2017	
21/12/2017	
22/12/2017	
23/12/2017	
24/12/2017	
25/12/2017	
26/12/2017	
27/12/2017	
28/12/2017	
29/12/2017	
30/12/2017	
31/12/2017	
01/01/2018	
02/01/2018	
03/01/2018	
04/01/2018	
05/01/2018	
06/01/2018	

06/01/2018 07/01/2018 08/01/2018 09/01/2018 10/01/2018 11/01/2018 12/01/2018 13/01/2018 14/01/2018 15/01/2018 16/01/2018 17/01/2018 18/01/2018 19/01/2018 20/01/2018 21/01/2018 22/01/2018 23/01/2018 24/01/2018

REDACTED 2016 ACE SBA IR-17 Attachment 1 Page 4 of 7

Date From	Price (\$/MMBTU)
25/01/2018	
26/01/2018	
27/01/2018	
28/01/2018	
29/01/2018	
30/01/2018	
31/01/2018	
01/02/2018	
02/02/2018	
03/02/2018	
04/02/2018	
05/02/2018	
06/02/2018	
07/02/2018	
08/02/2018	
09/02/2018	
10/02/2018	
11/02/2018	
12/02/2018	
13/02/2018	
14/02/2018	
15/02/2018	
16/02/2018	
17/02/2018	
18/02/2018	
19/02/2018	
20/02/2018	
21/02/2018	
22/02/2018	
23/02/2018	
24/02/2018	
25/02/2018	
26/02/2018	
27/02/2018	
28/02/2018	
01/03/2018	
01/04/2018	
01/05/2018	
01/05/2018	
01/07/2018	
01/08/2018	
01/09/2018	
01/10/2018	
01/11/2018	
01/12/2018	
02/12/2018	
03/12/2018	
04/12/2018	
05/12/2018	
06/12/2018	
07/12/2018	
08/12/2018	
09/12/2018	
10/12/2018	
11/12/2018	
12/12/2018	
12/12/2010	

13/12/2018 14/12/2018 15/12/2018 16/12/2018 17/12/2018 18/12/2018 19/12/2018 20/12/2018 21/12/2018 22/12/2018 23/12/2018 24/12/2018 25/12/2018 26/12/2018 27/12/2018 28/12/2018 29/12/2018 30/12/2018 31/12/2018

REDACTED 2016 ACE SBA IR-17 Attachment 1 Page 5 of 7

Date From	Price (\$/MMBTU)
01/01/2019	
02/01/2019	
03/01/2019	
04/01/2019	
05/01/2019	
06/01/2019	
07/01/2019	
08/01/2019	
09/01/2019	
10/01/2019	
11/01/2019	
12/01/2019	
13/01/2019	
14/01/2019	
15/01/2019	
16/01/2019	
17/01/2019	
18/01/2019	
19/01/2019	
20/01/2019	
21/01/2019	
22/01/2019	
23/01/2019	
24/01/2019	
25/01/2019	
26/01/2019	
27/01/2019	
28/01/2019	
29/01/2019	
30/01/2019	
31/01/2019	
01/02/2019	
02/02/2019	
03/02/2019	
04/02/2019	
05/02/2019	
06/02/2019	
07/02/2019	
08/02/2019	
09/02/2019	
10/02/2019	
11/02/2019	
12/02/2019	
13/02/2019	
14/02/2019	
15/02/2019	
16/02/2019	
17/02/2019	
18/02/2019	
19/02/2019	
20/02/2019	
21/02/2019	
22/02/2019	
23/02/2019	
24/02/2019	
25/02/2019	
26/02/2010	

26/02/2019 27/02/2019 28/02/2019 01/03/2019 01/04/2019 01/05/2019 01/06/2019 01/07/2019 01/08/2019 01/09/2019 01/10/2019 01/11/2019 01/12/2019 02/12/2019 03/12/2019 04/12/2019 05/12/2019 06/12/2019 07/12/2019

REDACTED 2016 ACE SBA IR-17 Attachment 1 Page 6 of 7

Date From	Price (\$/MMBTU)
08/12/2019	
09/12/2019	
10/12/2019	
11/12/2019	
12/12/2019	
13/12/2019	
14/12/2019	
15/12/2019	
16/12/2019	
17/12/2019	
18/12/2019	
19/12/2019	
20/12/2019	
21/12/2019	
22/12/2019	
23/12/2019	
24/12/2019	
25/12/2019	
26/12/2019	
27/12/2019	
28/12/2019	
29/12/2019	
30/12/2019	
31/12/2019	
01/01/2020	
02/01/2020	
03/01/2020	
04/01/2020	
05/01/2020	
06/01/2020	
07/01/2020	
08/01/2020	
09/01/2020	
10/01/2020	
11/01/2020	
12/01/2020	
13/01/2020	
14/01/2020	
15/01/2020	
16/01/2020	
17/01/2020	
18/01/2020	
19/01/2020	
20/01/2020	
21/01/2020	
22/01/2020	
23/01/2020	
24/01/2020	
25/01/2020	
26/01/2020	
27/01/2020	
28/01/2020	
29/01/2020	
30/01/2020	
31/01/2020	
01/02/2020	
02/02/2020	

02/02/2020 03/02/2020 04/02/2020 05/02/2020 06/02/2020 07/02/2020 08/02/2020 09/02/2020 10/02/2020 11/02/2020 12/02/2020 13/02/2020 14/02/2020 15/02/2020 16/02/2020 17/02/2020 18/02/2020 19/02/2020 20/02/2020

REDACTED 2016 ACE SBA IR-17 Attachment 1 Page 7 of 7

Date From	
21/02/2020	
22/02/2020	
23/02/2020	
24/02/2020	
25/02/2020	
26/02/2020	
27/02/2020	
28/02/2020	
29/02/2020	
01/03/2020	
01/04/2020	
01/05/2020	
01/06/2020	
01/07/2020	
01/08/2020	
01/09/2020	
01/10/2020	
01/11/2020	
01/12/2020	
02/12/2020	
03/12/2020	
04/12/2020	
05/12/2020	
06/12/2020	
07/12/2020	
08/12/2020	
09/12/2020	
10/12/2020	
11/12/2020	
12/12/2020	
13/12/2020 14/12/2020	
15/12/2020	
16/12/2020	
17/12/2020	
18/12/2020	
19/12/2020	
20/12/2020	
21/12/2020	
22/12/2020	
23/12/2020	
24/12/2020	
25/12/2020	
26/42/2020	

Price (\$/MMBTU)

26/12/2020 27/12/2020 28/12/2020 29/12/2020 30/12/2020

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

1	Requ	est IR-18:	
2			
3	Pleas	se provide an outa	ge plan for all units for 2015 and the two years prior and after.
	I ICae		ge plan for an units for 2015 and the two years prior and arter.
4			
5	(a)	For each unit, p	please provide the maintenance projects that have been completed or
6		are planned to l	be completed and the length of time needed for each project.
7			
8	(b)	For each plann	ed outage, please provide the main reason for the outage.
	(0)	1 of cuch pluin	eu outuge, preuse provide the main reason for the outuge.
9			
10	Resp	onse IR-18:	
11			
12	(a)	Outage charters	are attached for 2014, 2015, and 2016. 2017 charters are in approval
13		-	ne. Outage timelines are defined in the respective charter. Individual
		-	
14		elements or proje	ects within each outage are optimized within the duration of the outage.
15			
16	(b)	The main reason	(s) for each outage are outlined in the respective Charter. Please refer to
17		the following att	achments
18		the following at	
10		Attachment 1	2014 Charter (Biomass)
		Attachment 2	2014 Charter (Lingan)
		Attachment 3	2014 Charter (Point Aconi)
		Attachment 4	2014 Charter (Point Tupper)
		Attachment 5	2014 Charter (Trenton)
		Attachment 6	2014 Charter (Tufts Cove)
		Attachment 7	2015 LIN Charter Signed
		Attachment 8	2015 PHB Charter Signed
		Attachment 9	2015 POA Charter Signed
		Attachment 10	2015 POT Charter Signed
		Attachment 11	2015 TRE Outage Charter Signed
		Attachment 12	2015 TUC Charter Signed
		Attachment 13	2016 Outage Charter Signed – Lingan 1
		Attachment 14	2016 Outage Charter Signed – Lingan 2
		Attachment 15	2016 Outage Charter Signed – Lingan 3
		Attachment 16	2016 Outage Charter Signed – Lingan 4

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

Attachment 17	2016 Outage Charter Signed – PH Biomass
Attachment 18	2016 Outage Charter Signed – Point Aconi
Attachment 19	2016 Outage Charter Signed – Point Tupper
Attachment 20	2016 Outage Charter Signed – Trenton 5
Attachment 21	2016 Outage Charter Signed – Trenton 6
Attachment 22	2016 Outage Charter Signed – Tufts Cove 1
Attachment 23	2016 Outage Charter Signed – Tufts Cove 2
Attachment 24	2016 Outage Charter Signed – Tufts Cove 3
Attachment 25	2016 Outage Charter Signed – Tufts Cove 6
Attachment 26	2016 Outage Charters Signed – Burnside Combustion Turbines
Attachment 27	2016 Outage Charters Signed – Tufts Cove Combustion Turbines
Attachment 28	2016 Outage Charters Signed – Tusket Combustion Turbines
Attachment 29	2016 Outage Charters Signed – VJ Combustion Turbines

NON-CONFIDENTIAL

1

2016 ACE SBA IR-18 Attachment 1 Page 1 of 4

SHUTDOWN CHARTER	
Project Name	2014 Shutdown Charter
Executive Owner	Dave Pickles
Shutdown Owner	Jeff Campbell
Shutdown Manager	Ray Barrett

BACKGROUND INFORMATION

The Charter is based on the Standardized Shutdown TMP. It Identifies our major Shutdown Deliverables for 2014 and provides a high level overview.

In 2014 there are a number of Capital projects and inspections which will require the generating unit to be shutdown. Some of the capital projects are for life extensions and reliability. The inspections are time stamped, some by the O.E.M. and others by plant operating practices. Both of these are influenced either by Thermal Maintenance Practices or the Life Cycle Management programs of each plant. This work is also influenced by the Reliability Asset Health assessments.

These Major Items are Identified through review of previous shutdown inspections, asset health assessments, equipment maintenance, operating history, and regulatory time stamped requirements.

SAFETY PLAN

- 1) Pt. Tupper Bio Mass is committed to an accident free work place and will be committing to early identification & mitigation any risks that pose a threat to employee safety.
- 2) Safety Stand Down will be coordinated early in the outage schedule, engaging all staff & contractors.
- Safety person will be utilized on outages to assisting in promoting safety awareness, job observation, risk assessments, housekeeping, restricted area identification, and incident reporting.
- Shutdown Preparation will ensure that equipment and work Areas are properly inspected and safe for use before shutdown begins (Housekeeping, Cranes, Lifting Gear, Lighting, vehicles, etc.)
- 5) Safety Issues and concerns will be discussed with Shutdown leads during planned shutdown meetings.
- 6) All aspects of the safety program will be maintained during the Shutdown.
- 7) All Safety Documentation (Incident Reports, Observation Reports, Etc.) managed by the shutdown safety person will be recorded along with the Shutdown Report for history purposes.
- 8) A pre-return to service walk down inspection and sign-off will be completed prior to hand-off to Operations (Staging, Insulation, Combustibles, and Obstructions).
- 9) Plant Cleanups will be conducted during and after Shutdowns as required to ensure that the Plant remains Clean & Safe to work in.

2016 ACE SBA IR-18 Attachment 1 Page 2 of 4

	SHUTDOWN OBJECTIVES		
1	Accident Free		
2	Execute the planned work during the outages safely, on-time and on-budget.		
3	At Least 90% Completion Rate of Plant Shutdown Schedule (Projects, Preventative, Issues) Address all known plant issues that affect unit reliability, performance and heat rate.		
4			

ROLE	RESPONSIBILITIES	
Executive Owner	Provides the leadership, priority and commitment to the shutdown scope from the senior executive perspective. Serves as liaison to the NSPI Leadership Team, communicating the shutdown objectives and assuring proper resourcing.	
Shutdown Owner	Actively champions and promotes the shutdown work scope. Clarifies Shutdown objectives and deliverables. Assists with the resolution of issues that cannot be resolved by the shutdown manager. Helps remove obstacles to success.	
Shutdown Manager	 Has overall accountability for the successful execution of the maintenance shutdown in terms of scope, cost, schedule, and quality and customer satisfaction, from initial involvement to completion. Provides ongoing direction, motivation and support to plant staff and other shutdown resources. Continually ensures effective communication with key shutdown stakeholders. Proactively monitors shutdown performance and ensures appropriate action is taken to address risks and issues. Ensures proper documentation is created, maintained and archived. 	

2016 ACE SBA IR-18 Attachment 1 Page 3 of 4

UNIT OUTAGE OVERVIEW

For Pt. Tupper Bio Mass in 2014 the Thermal Maintenance Outage year looks like:

PHB – Major Shutdown (3 Weeks 2nd Q 2014)

- Kablitz Water Cool Beams (cap)
- boiler grates fixed (cap)
- Boiler grates moving (cap)
- Bottom Boiler grates Cap)
- CW culvert Inspection/Cleaning (OM&GI)
- Bottom ash sealing screw (cap)
- Precip inspection(OM&GI)
- Precip screws and troughs (CAP)
- 50% transel screwsreplacement (cap)
- Sprockets and chains for above (cap)
- -TMP compliance deferred 2015
- PM shutdown compliance
- regulatory
- Fuel system maint
- Distributing conveyor
- Bottom ash conveyor
- Superheater inspection
- Tube reconfiguration from leak repair on Aug 1
- -Ash bunker work

	MAJOR DELIVERABLES			
1	Draft Scope of Shutdown Capital Projects & Maintenance Inspections / Repairs is developed with time & cost Estimates for Labor Staffing and accurate Budgeting.			
2	Validate scope of work with Asset Experts, Asset Management Group, OEMs, Etc.			
3	Known required (long lead) materials procured in advance and ETA tracked to delivery.			
4	Have all contract work identified and RFP's / RFQ's drafted for release allowing time for terms and conditions to be finalized. (+\$1M)			

ASSUMPTIONS

Economic outages will be assessed as they occur and the ability to reduce scope for the original outage will result on a case by case basis. Opportunities may exist to reduce term labour.

MILESTONES		Date
1	End of Q1 – Finalized work plan, draft capital list, draft budget	NA

2016 ACE SBA IR-18 Attachment 1 Page 4 of 4

	2	End of Q2 – Finalized capital plan, more accurate work scope (labour plan) and budget	NA
ſ	3	End of Q3 – Finalized budget, capital program and maintenance scope.	September 30, 2013

	Amount	
1	Unit PHB – Major Shutdown (3Weeks 2 nd Q 2014)	750K
	Total Budget	750K

HIGH LEVEL CAPITAL BUDGET	Amount
Boiler	750K
Analytical Panel	106K
Valve isolation	75K
STG control upgrades	35K
Dust Mitigation in Elect Rms	28K
PHB - Stacker Upgrade	100K
	1.094

MAJOR RISKS	Probability (H,M,L)	Impact to Project (H,M,L)
Unforeseen findings when boiler is inspected	М	М
Define mitigation and / or contingency strategies where Probabil	ity or Impact are	High:

AGREED			
Shutdown Manager	Raymond Barrett	Date	
Shutdown Owner		Date	
Executive Owner		Date	

2016 ACE SBA IR-18 Attachment 2 Page 1 of 5

SHUTDOWN CHARTER		
Project Name	2014 Shutdown Charter	
Executive Owner	Dave Pickles	
Shutdown Owner	Brad George	
Shutdown Manager	Stewart Whynott	

BACKGROUND INFORMATION

The Charter is based on the Standardized Shutdown TMP. It Identifies our major Shutdown Deliverables for 2014 and provides a high level overview.

In 2014 there are a number of Capital projects and inspections which will require the generating units to be shutdown. Some of the capital projects are for life extensions and reliability. The inspections are time stamped, some by the O.E.M. and others by plant operating practices. Both of these are influenced either by Thermal Maintenance Practices or the Life Cycle Management programs of each plant. This work is also influenced by the Reliability Asset Health assessments.

These Major Items are Identified through review of previous shutdown inspections, asset health assessments, equipment maintenance, operating history, and regulatory time stamped requirements.

SAFETY PLAN

- 1) Lingan Generating Station is committed to an accident free work place and will be committing to early identification and mitigation any risks that pose a threat to employee safety.
- 2) Safety Stand Down will be coordinated early in the outage schedules, engaging all staff and contractors.
- A safety person will be utilized on outages to assist promoting safety awareness, job observation, risk assessments, housekeeping, restricted area identification, and incident reporting.
- Shutdown Preparation will ensure that equipment and work areas are properly inspected and safe for use before shutdown begins (Housekeeping, Cranes, Lifting Gear, Lighting, vehicles, etc.)
- 5) Safety Issues and concerns will be discussed with Shutdown leads during planned shutdown meetings.
- 6) All aspects of the safety program will be maintained during the Shutdown.
- 7) All Safety Documentation (Incident Reports, Observation Reports, Etc.) managed by the shutdown safety person will be recorded along with the Shutdown Report for history purposes.
- 8) A pre-return to service walk down inspection and sign-off will be completed prior to hand-off to Operations (Staging, Insulation, Combustibles, and Obstructions).
- 9) Plant Cleanups will be conducted after Shutdowns as required to ensure that the Plant remains Clean and Safe to work in.

2016 ACE SBA IR-18 Attachment 2 Page 2 of 5

SHUTDOWN OBJECTIVES		
1	Accident Free	
2	Execute the planned work during the outages safely, on-time and on-budget.	
3	At Least 85% Completion Rate of Plant Shutdown Schedule (Projects, Preventative, Issues)	
4	If feasible, address all known plant issues that affect unit reliability, performance and heat rate.	

ROLE	RESPONSIBILITIES	
Executive Owner	Promotes Health and Safety during Shutdowns Provides the leadership, priority and commitment to the shutdown scope from the senior executive perspective. Serves as liaison to the NSPI Leadership Team, communicating the shutdown objectives and assuring proper resourcing.	
Shutdown Owner	Promotes Health and Safety during Shutdowns Actively champions and promotes the shutdown work scope. Clarifies Shutdown objectives and deliverables. Assists with the resolution of issues that cannot be resolved by the shutdown manager. Helps remove obstacles to success.	
Shutdown Manager	Promotes Health and Safety during Shutdowns Has overall accountability for the successful execution of the maintenance shutdown in terms of scope, cost, schedule, and quality and customer satisfaction, from initial involvement to completion. Provides ongoing direction, motivation and support to plant staff and other shutdown resources. Continually ensures effective communication with key shutdown stakeholders. Proactively monitors shutdown performance and ensures appropriate action is taken to address risks and issues. Ensures proper documentation is created, maintained and archived.	

2016 ACE SBA IR-18 Attachment 2 Page 3 of 5

UNIT OUTAGE OVERVIEW

For Lingan GS in 2014 the Thermal Maintenance Outage year looks like:

Unit 1 – Minor Shutdown (2 Weeks Spring 2014)

- Boiler inspection.
- L-0 blade inspection.
- Routine outage work/inspection/PM.
- Layup (pending)

Unit 2 – Minor Shutdown (2 Weeks Spring 2014)

- Boiler inspection.
- L-0 blade inspection.
- Routine outage work/inspection/PM.
- Layup (pending)

Unit 3 – Major Shutdowns (1 Weeks Fall 2014)

- LP blade inspection
- Boiler inspection
- Minor Repairs

Unit 4 – Minor Shutdown (2weeks Fall 2014)

- Boiler inspection.
- L-0 blade inspection.
- Routine outage work/inspection/PM.

MAJOR DELIVERABLES				
1	Draft scope of shutdown capital projects & maintenance inspections / repairs is developed with time & cost estimates for labor staffing and accurate budgeting.			
2	Validate scope of work with Asset Experts, Asset Management Group, OEMs, Etc.			
3	Known required (long lead) materials procured in advance and ETA tracked to delivery.			
4	Have all contract work identified and RFP's / RFQ's drafted for release allowing time for terms and conditions to be finalized. (+\$1M)			

ASSUMPTIONS

2016 ACE SBA IR-18 Attachment 2 Page 4 of 5

Economic outages will be assessed as they occur and the ability to reduce scope for the original outage will result on a case by case basis. Opportunities may exist to reduce term labour. Unit 1 and 2 will be ABNO (pending)

	MILESTONES	Date
1	End of Q1 – Finalized work plan, draft capital list, draft budget	March 31, 2013
2	End of Q2 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2013
3	End of Q3 – Finalized budget, capital program and maintenance scope.	September 30, 2013

	HIGH LEVEL OM&G BUDGET	Amount
1	Unit 1 – Minor Shutdown (2 Weeks Spring 2014)	492K
2	Unit 2 – Minor Shutdown (2 Weeks Spring 2014)	472K
3	Unit 3 – Major Shutdown (1 Weeks Fall 2014)	380K
4	Unit 4 – Minor Shutdown (2 weeks Fall 2014)	472K
	Total Budget	1818K

	HIGH LEVEL CAPITAL BUDGET	Amount
1	Unit 1 – Minor Shutdown (2 Weeks Spring 2014)	1460K
2	Unit 2 – Minor Shutdown (2 Weeks Spring 2014)	100K.
3	Unit 3 – Minor Shutdown (1 Weeks Spring 2014)	1750K
4	Unit 4 – Minor Shutdown (2 weeks Fall 2014)	1945K
	Common System Capital	3225K
	Total Budget	8480K

	MAJOR RISKS	Probability (H,M,L)	Impact to Project (H,M,L)
1	L-0 blade inspection	Μ	Н
2			
3			
4			
Define mitigation and / or contingency strategies where Probability or Impact are High:			

1- Inspection and early detection will assist in mitigating major blade failure and allow for planned pocurment of replacement blades.

2016 ACE SBA IR-18 Attachment 2 Page 5 of 5

AGREED			
Shutdown Manager		Date	
Shutdown Owner		Date	
Executive Owner		Date	

2016 ACE SBA IR-18 Attachment 3 Page 1 of 4

SHUTDOWN CHARTER	
Project Name 2014 Shutdown Charter	
Executive Owner	Mark Sidebottom
Shutdown Owner	Debra McLellan
Shutdown Manager	Jason March

Background Information

Based on Shutdown Standardization TMP, and past experience the Point Aconi unit requires a yearly outage for inspection on the boiler pressure parts and refractory repairs. In addition standard TMP's will be completed through the PM database system and any defects determined through the operating year will be addressed if possible.

In 2014 there are a number of Capital projects and inspections which will require the generating units to be shutdown. Some of the capital projects are for life extensions and reliability. The inspections are time stamped, some by the O.E.M. and others by plant operating practices. Both of these are influenced either by Thermal Maintenance Practices or the Life Cycle Management programs of each plant.

A thorough review of previous shutdown inspections, asset health assessments have helped determine the required work.

Shutdown Safety Plan

2016 ACE SBA IR-18 Attachment 3 Page 2 of 4

- Point Aconi is committed to an accident free work place and will be committing to early identification & mitigation any risks to employee safety.
- Safety Stand Down will be coordinated early in the outage schedule, engaging all staff & contractors.
- Safety person will be utilized on outages to assisting in promoting safety awareness, job observation, risk assessments, housekeeping, restricted area identification, and incident reporting.
- Shutdown Preparation will ensure that equipment and work Areas are properly inspected and safe for use before shutdown begins (Housekeeping, Cranes, Lifting Gear, Lighting, vehicles, etc.)
- Safety Issues and concerns will be discussed with Shutdown leads during planned shutdown meetings.
- All aspects of the safety program will be maintained during the Shutdown.
- All Safety Documentation (Incident Reports, Observation Reports, Etc.) managed by the shutdown safety person will be recorded along with the Shutdown Report for history purposes.
- A pre-return to service walk down inspection and sign-off will be completed prior to hand-off to Operations (Staging, Insulation, Combustibles, and Obstructions).
- Plant Cleanups will be conducted after Shutdowns as required to ensure that the Plant remains Clean & Safe to work in.

	Shutdown Objectives	
1	Execute the planned work during the outages safety, on-time and on-budget.	
2	Address all known plant issues that affect unit reliability and performance.	
3	Completion of planned maintenance and project work during the allocated shutdown schedule.	

Role	Responsibilities	
Executive OwnerProvides the leadership, priority and commitment to the shutdown s the senior executive perspective. Serves as liaison to the NSPI Leadership Team, communicating the objectives and assuring proper resourcing.		
Shutdown Owner	Actively champions and promotes the shutdown work scope. Clarifies Shutdown objectives and deliverables. Assists with the resolution of issues that cannot be resolved by the shutdown manager. Helps remove obstacles to success.	
Shutdown	Has overall accountability for the successful execution of the maintenance shutdown in terms of scope, cost, schedule, quality and customer satisfaction,	
Managerfrom initial involvement to completion. Provides ongoing direction, motivation and support to plant stat shutdown resources. Continually ensures effective communication with key shutdow Proactively monitors shutdown performance and ensures approx		

2016 ACE SBA IR-18 Attachment 3 Page 3 of 4

taken to address risks and issues.
Ensures proper documentation is created, maintained and archived.

Unit Outage Overview

A complete review of all known inspections, OEM recommendations and a critical path analysis has identified the following required outage weeks per unit:

For Point Aconi in 2014 the thermal maintenance outage will include: Unit 1 – Major outage with normal maintenance activities. (6 weeks required)

	Major Deliverables
1	Known required (long lead) parts procured and ETA tracked to delivery.
2	Have all contractor work identified and RFP's / RFQ's drafted for release allowing time for terms and conditions to be finalized. (+\$1M)
3	Draft capital list of projects from known work required
4	Validate scope of work with asset experts, asset management group, OEM.
5	Draft more accurate shutdown budget requirements

Assumptions

Economic outages will be assessed as they occur and the ability to reduce scope for the original outage will result on a case by case basis. Opportunities may exist to reduce term labour.

	Milestones	Date
1	End of Q1 – Finalized work plan, draft capital list, draft budget	Mar 31 st
2	End of Q2 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30th
3	End of Q3 – Finalized budget, capital program and maintenance scope.	Sept. 30th

	High Level OM&G Budget	Amount
1	Unit 1 – major turbine maintenance activities	680,000
2	Unit 1 – Boiler inspection and maintenance	2,046,045
3	Unit 1 – Plant Labour & Materials	620,000
	Total Budget	3,346,045

2016 ACE SBA IR-18 Attachment 3 Page 4 of 4

	High Level Capital Budget	Amount
1	Boiler (Economizer Bend, Arrowheads, Loopseal Nozzles,vortex finder)	750,000
2	Boiler Refractory	710,000
3	AVR Replacement	300,000
4	Turbine Control System	1,500,000
5	Turbine Repairs	2,500,000
6	CW Valve Replacement	300,000
	Total Budget	6,060,000

	Risks	Probability (H,M,L)	Impact to Project (H,M,L)
1	Boiler (Economizer Bend, Arrowheads, Loopseal Nozzles,vortex finder)	Medium	High
2	Boiler Refractory	Low	High
3	AVR Replacement	Low	High
4	Turbine Control System	Low	Medium
5	Turbine Repairs	High	High
6	CW Valve Replacement	Medium	Medium
 Start inspecting the boiler as early as possible, the plan is to not work weekends, but will be available if extra boiler repairs are required. AVR is no longer supported by OEM. Turbine Control System is no longer supported by OEM. There are known repairs required on the next scheduled major as per the last shutdown reports from Turbine OEM in 2004 and 2011. 			

CW Valves are original to the plant and are monitored yearly.

Agreed			
Shutdown Manager Date			
Shutdown Owner		Date	
Executive Owner		Date	

2016 ACE SBA IR-18 Attachment 4 Page 1 of 4

SHUTDOWN CHARTER		
Project Name 2014 Shutdown Charter		
Executive Owner	Dave Pickles	
Shutdown Owner	Jeff Campbell	
Shutdown Manager	Ray Barrett	

BACKGROUND INFORMATION

The Charter is based on the Standardized Shutdown TMP. It Identifies our major Shutdown Deliverables for 2014 and provides a high level overview.

In 2014 there are a number of Capital projects and inspections which will require the generating units to be shutdown. Some of the capital projects are for life extensions and reliability. The inspections are time stamped, some by the O.E.M. and others by plant operating practices. Both of these are influenced either by Thermal Maintenance Practices or the Life Cycle Management programs of each plant. This work is also influenced by the Reliability Asset Health assessments.

These Major Items are Identified through review of previous shutdown inspections, asset health assessments, equipment maintenance, operating history, and regulatory time stamped requirements.

SAFETY PLAN

- 1) Pt. Tupper is committed to an accident free work place and will be committing to early identification & mitigation any risks that pose a threat to employee safety.
- 2) Safety Stand Down will be coordinated early in the outage schedule, engaging all staff & contractors.
- Safety person will be utilized on outages to assisting in promoting safety awareness, job observation, risk assessments, housekeeping, restricted area identification, and incident reporting.
- Shutdown Preparation will ensure that equipment and work Areas are properly inspected and safe for use before shutdown begins (Housekeeping, Cranes, Lifting Gear, Lighting, vehicles, etc.)
- 5) Safety Issues and concerns will be discussed with Shutdown leads during planned shutdown meetings.
- 6) All aspects of the safety program will be maintained during the Shutdown.
- 7) All Safety Documentation (Incident Reports, Observation Reports, Etc.) managed by the shutdown safety person will be recorded along with the Shutdown Report for history purposes.
- 8) A pre-return to service walk down inspection and sign-off will be completed prior to hand-off to Operations (Staging, Insulation, Combustibles, and Obstructions).
- 9) Plant Cleanups will be conducted during and after Shutdowns as required to ensure that the Plant remains Clean & Safe to work in.

2016 ACE SBA IR-18 Attachment 4 Page 2 of 4

SHUTDOWN OBJECTIVES		
1	Accident Free	
2	Execute the planned work during the outages safely, on-time and on-budget.	
3	3 At Least 90% Completion Rate of Plant Shutdown Schedule (Projects, Preventative, Issues)	
4	Address all known plant issues that affect unit reliability, performance and heat rate.	

ROLE	RESPONSIBILITIES	
Executive Owner	Provides the leadership, priority and commitment to the shutdown scope from the senior executive perspective. Serves as liaison to the NSPI Leadership Team, communicating the shutdown objectives and assuring proper resourcing.	
Shutdown Owner	Actively champions and promotes the shutdown work scope. Clarifies Shutdown objectives and deliverables. Assists with the resolution of issues that cannot be resolved by the shutdown manager. Helps remove obstacles to success.	
Shutdown Manager	 Has overall accountability for the successful execution of the maintenance shutdown in terms of scope, cost, schedule, and quality and customer satisfaction, from initial involvement to completion. Provides ongoing direction, motivation and support to plant staff and other shutdown resources. Continually ensures effective communication with key shutdown stakeholders. Proactively monitors shutdown performance and ensures appropriate action is taken to address risks and issues. Ensures proper documentation is created, maintained and archived. 	

2016 ACE SBA IR-18 Attachment 4 Page 3 of 4

UNIT OUTAGE OVERVIEW

For Pt. Tupper in 2014 the Thermal Maintenance Outage year looks like:

Unit 2 – Major Shutdown (4 Weeks 2nd Q 2014)

- Buner bucket replacement (cap) deferred 2015 Shut down defects
- # 5 HP heater replacement (cap) deferred 2015
- Boiler Inspection (OM&G)
- Boiler repair (cap) deferred 2015
- CW culvert Cleaning (OM&GI)
- TSE replacement (Capl) deferred 2015
- Precip inspection(OM&GI) deferred 2015
- LCM compliance deferred 2015
- -TMP compliance deferred 2015
- PM shutdown compliance
- regulatory

MAJOR DELIVERABLES		
1	Draft Scope of Shutdown Capital Projects & Maintenance Inspections / Repairs is developed with time & cost Estimates for Labor Staffing and accurate Budgeting.	
2	Validate scope of work with Asset Experts, Asset Management Group, OEMs, Etc.	
3	Known required (long lead) materials procured in advance and ETA tracked to delivery.	
4	Have all contract work identified and RFP's / RFQ's drafted for release allowing time for terms and conditions to be finalized. (+\$1M)	

ASSUMPTIONS

Economic outages will be assessed as they occur and the ability to reduce scope for the original outage will result on a case by case basis. Opportunities may exist to reduce term labour.

MILESTONES		Date
1	End of Q1 – Finalized work plan, draft capital list, draft budget	March 31, 2013
2	End of Q2 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2013
3	End of Q3 – Finalized budget, capital program and maintenance scope.	September 30, 2013

2016 ACE SBA IR-18 Attachment 4 Page 4 of 4

HIGH LEVEL OM&G BUDGET		Amount
1	Unit 2 – Major Shutdown (1 Weeks 2 nd Q 2014)	0
		250K OM&G
	Total Budget	250K

HIGH LEVEL CAPITAL BUDGET	
Boiler	
# 5 heater	
TSE replacement	
HPDA replacement	
Remove 600 V mcc from unit 1	
Re-heater, super heater	

	MAJOR RISKS	Probability (H,M,L)	Impact to Project (H,M,L)
Define mitigation and / or contingency strategies where Probability or Impact are High:			

AGREED				
Shutdown Manager	Raymond Barrett	Date	May 2013	
Shutdown Owner		Date		
Executive Owner		Date		

2016 ACE SBA IR-18 Attachment 5 Page 1 of 4

Shutdown Charter

SHUTDOWN CHARTER		
Project Name	2014 Shutdown Charter	
Executive Owner	Dave Pickles	
Shutdown Owner	Stewart Whynott	
Shutdown Manager	Dion Antle	

BACKGROUND INFORMATION

The Charter is based on the Standardized Shutdown TMP. It Identifies our major Shutdown Deliverables for 2014 and provides a high level overview.

In 2014 there are a number of Capital projects and inspections which will require the generating units to be shutdown. Some of the capital projects are for life extensions and reliability. The inspections are time stamped, some by the O.E.M. and others by plant operating practices. Both of these are influenced either by Thermal Maintenance Practices or the Life Cycle Management programs of each plant. This work is also influenced by the Reliability Asset Health assessments.

These Major Items are Identified through review of previous shutdown inspections, asset health assessments, equipment maintenance, operating history, and regulatory time stamped requirements.

SAFETY PLAN

- 1) TRE is committed to an accident free work place and will be committing to early identification & mitigation of any risks that pose a threat to employee safety.
- 2) Safety Stand Downs will be coordinated early in the outage schedule, engaging all staff & contractors.
- 3) Safety persons will be utilized on outages to assist promoting safety awareness, job observation, risk assessments, housekeeping, restricted area identification, and incident reporting.
- Shutdown Preparation will ensure that equipment and work Areas are properly inspected and safe for use before shutdown begins (Housekeeping, Cranes, Lifting Gear, Lighting, vehicles, etc.)
- 5) Safety Issues and concerns will be discussed with Shutdown leads during planned shutdown meetings.
- 6) All aspects of the safety program will be maintained during the Shutdown.
- 7) All Safety Documentation (Incident Reports, Observation Reports, etc.) managed by the shutdown safety person will be recorded for history purposes.
- 8) A pre-return to service walk down inspection and sign-off will be completed prior to hand-off to Operations (Staging, Insulation, Combustibles, and Obstructions).
- 9) Housekeeping standards will be maintained throughout the outage.

2016 ACE SBA IR-18 Attachment 5 Page 2 of 4

Shutdown Charter

SHUTDOWN OBJECTIVES		
1	Accident Free	
2	Execute the planned work during the outages safely, on-time and on-budget.	
3	At Least 85% Completion Rate of Plant Shutdown Schedule (Projects, Preventative, Issues)	

ROLE	RESPONSIBILITIES	
Executive Owner	Provides the leadership, priority and commitment to the shutdown scope from the senior executive perspective. Serves as liaison to the NSPI Leadership Team, communicating the shutdown objectives and assuring proper resourcing.	
Shutdown Owner	Actively champions and promotes the shutdown work scope. Clarifies Shutdown objectives and deliverables. Assists with the resolution of issues that cannot be resolved by the shutdown manager. Helps remove obstacles to success.	
Shutdown Manager	 Has overall accountability for the successful execution of the maintenance shutdown in terms of scope, cost, schedule, quality, and customer satisfaction, from initial involvement to completion. Provides ongoing direction, motivation and support to plant staff and other shutdown resources. Continually ensures effective communication with key shutdown stakeholders. Proactively monitors shutdown performance and ensures appropriate action is taken to address risks and issues. Ensures proper documentation is created, maintained and archived. 	

2016 ACE SBA IR-18 Attachment 5 Page 3 of 4

Shutdown Charter

UNIT OUTAGE OVERVIEW

For TRE in 2014 the Thermal Maintenance Outage year looks like:

Unit 5 – Minor Shutdown (6 Weeks)

- Pantlegs repair
- 5-1 Air Heater Outlet Exp Joint Replacement
- Coal MCC Transformer Replacement
- Precip Refurbishment
- Analytical Panel
- Lube Oil Cooler Retube
- Low Load Valve Replacement
- Boiler Refurbishment
- 5-3 Pulverizer Refurbishments
- 4kV Breakers (2014)
- Resin Replacement 2014
- Safety Valves (OMG)
- Cleaning (Condenser, Precip, Air Heater) (OMG)
- Boiler Maintenance (OMG)
- A1 / A2 Shaker House Fire Line replacement
- ID Fan Beck Drives
- Blowdown Tank Header

Unit 6 - Mini Shutdown (3 weeks)

- TRE6 High Energy Piping Snubbers
- Safety Valves (OMG)
- FAC Inspections (OMG)
- Cleaning (Condenser, Precip, Air Heater) (OMG)

	MAJOR DELIVERABLES		
1	Draft Scope of Shutdown Capital Projects & Maintenance Inspections / Repairs is developed with time & cost Estimates for Labor Staffing and accurate Budgeting.		
2	Validate scope of work with Asset Experts, Asset Management Group, OEMs, Etc.		
3	Known required (long lead) materials procured in advance and ETA tracked to delivery.		
4	Have all contract work identified and RFP's / RFQ's drafted for release allowing time for terms and conditions to be finalized. (+\$1M)		

ASSUMPTIONS

Economic outages will be assessed as they occur and the ability to reduce scope for the original outage will result on a case by case basis. Opportunities may exist to reduce term labour.

MILESTONES		Date
1	Finalize work plan (scope freeze), capital list, budget	Outage Start – 30 days

2016 ACE SBA IR-18 Attachment 5 Page 4 of 4

Shutdown Charter

2	Finalize accurate work scope (labour plan).	Outage Start – 30 days
---	---	---------------------------

	HIGH LEVEL OM&G BUDGET		
1	Unit 5 – Minor Shutdown (6 Weeks)	\$750k	
2	Unit 6 – Mini Shutdown (3 Weeks)	\$750k	
	Total Budget	\$1.5M	

HIGH LEVEL CAPITAL BUDGET		Amount
1	Unit 5 – Minor Shutdown (6 Weeks)	\$1.45M
2	Unit 6 – Mini Shutdown (3 Weeks)	\$150k
	Total Budget	\$1.5M

	MAJOR RISKS	Probability (H,M,L)	Impact to Project (H,M,L)
1	All Units – Major Issues found while performing Inspections on Critical Equipment	Low	High
2	Outage planning – resource requirements to properly plan and support the work.	High	High
3	Risk tolerance vs Funding approval	Med	Med
Define mitigation and / or contingency strategies where Probability or Impact are High:			

3) Coordinate inspections early in shutdown schedule. Review previous inspections and reliability data.

AGREED			
Shutdown Manager		Date	
Shutdown Owner		Date	
Executive Owner		Date	

2016 ACE SBA IR-18 Attachment 6 Page 1 of 5

SHUTDOWN CHARTER		
Project Name	2014 Shutdown Charter	
Executive Owner	Tony Stevens	
Shutdown Owner	Tim Gillis	
Shutdown Manager	Tim Gillis	

BACKGROUND INFORMATION

The Charter is based on the Standardized Shutdown Quality Process. It Identifies our major Shutdown Deliverables for 2014 and provides a high level overview.

In 2014 there are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be shutdown. The inspections and projects can be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs.

These high level Items are Identified thorough review of previous shutdown inspections, asset health assessments, Equipment Maintenance & Operating History, And Regulatory Time Stamped Requirements.

SAFETY PLAN

- 1) Tufts Cove is committed to an accident free work place and will be committing to early identification & mitigation any risks that pose a threat to employee safety
- 2) Safety Stand Down will be coordinated early in the outage schedule, engaging all staff & contractors.
- Safety person will be utilized on outages to assisting in promoting safety awareness, job observation, risk assessments, housekeeping, restricted area identification, incident reporting, and first aid attendant.
- 4) Shutdown Preparation will ensure that equipment and work Areas are properly inspected and safe for use before shutdown begins (Cranes, Lifting Gear, Lighting, vehicles, ect.)
- 5) Safety Issues and concerns will be discussed with Shutdown leads during planned shutdown meetings.
- 6) All aspects of the safety program will be maintained during the Shutdown.
- All Safety Documentation (Inc. Reports, Observation Reports, Risk Assessments Ect) managed by the Shutdown Safety Person will be Recorded & Filed along with the Shutdown Report for History & Learning Purposes.
- 8) Plant Cleanups will be conducted either before or after Shutdowns as required to ensure that the Plant remains Clean & Safe to work in. The Safety person will monitor work sites for congestion and cleanliness and mitigate any issues.
- 9) Site Emergency Response personnel will be updated by the safety person as to what confined space high angle, and other hazardous work is commencing and advise supervisors to staff ERT members as required.

2016 ACE SBA IR-18 Attachment 6 Page 2 of 5

	SHUTDOWN OBJECTIVES		
1	No Accidents		
2	Execute the planned work during the outages safety, on-time and on-budget.		
3	At Least 90% Completion Rate of Plant Shutdown Schedule (Projects, Preventative, Issues)		
4	Address all known plant issues that affect unit reliability and performance.		

ROLE	RESPONSIBILITIES
Executive Owner	Promotes Health & Safety Provides the leadership, priority and commitment to the shutdown scope from the senior executive perspective. Serves as liaison to the NSPI Leadership Team, communicating the shutdown objectives and assuring proper resourcing.
Shutdown Owner	Promotes Health & Safety Actively champions and promotes the shutdown work scope. Clarifies Shutdown objectives and deliverables. Assists with the resolution of issues that cannot be resolved by the shutdown manager. Helps remove obstacles to success.
Shutdown Manager	Promotes Health & Safety Has overall accountability for the successful execution of the maintenance shutdown in terms of scope, cost, schedule, and quality and customer satisfaction, from initial involvement to completion. Provides ongoing direction, motivation and support to plant staff and other shutdown resources. Continually ensures effective communication with key shutdown stakeholders. Proactively monitors shutdown performance and ensures appropriate action is taken to address risks and issues. Ensures proper documentation is created, maintained and archived.

2016 ACE SBA IR-18 Attachment 6 Page 3 of 5

UNIT OUTAGE OVERVIEW For Tuft's Cove in 2014 the Thermal Maintenance Outage year looks like: Unit 1 – Major Shutdown (10 Weeks March 2014 - Subject to change with Pending Capital Submission) - Routine Inspections/Assessments, Preventative Maintenance and Repairs - Main Feed water Valve Overhauls - Overhaul & AVK of Boiler Pressure Safety Valves - Continue Feedwater FAC & High Energy Piping Program - Coolers Assessments & Possible Upgrades - Closed Cooling System Piping & Exchangers Replacements / Upgrades - Inspection of Bled Steam Non-Return Valves - Turbine Major: - HP/IP Turbine 50K Inspections as per TMP-037 - LP Turbine Inspections as per TMP-037 - Valves & Chests Inspections - Turbine Bolting Replacements (Capital) - Possible Stop Valve or Seat Replacements (Capital) - HP Inlet Seal Replacements (Capital) - Steam Path Audit & Possible Seal Upgrades (Capital) - Contingency (IP Row 1C Diaphragm, IP Blading, HP Row4, ect.) - LP Erosion Shield Replacements (Capital) - Turbine HP/IP Inlets/Loops Piping, Traps, Attachments & Welds (Pending CAP) - LH & RH Governor Valve Seats/Strainers Replacement (Capital) - Motor Refurbishments 4160v (Capital) - Air Heater Structural Repairs - DCS Upgrades (Capital) - Breaker / Switchgear Replacements (Capital) - Air Receiver Replacements (TBD) Unit 2 – Minor Shutdown (3 Weeks May 2014 - Subject to change with Pending Capital Submission) - Routine Inspections/Assessments, Preventative Maintenance and Repairs - Main Feed water Valve Overhauls - AVK Only of Boiler Pressure Safety Valves - Continue Feedwater FAC & High Energy Piping - Inspection of Bled Steam Non-Return Valves - Turbine Routine Inspections & Repairs Only - 20% Eddy Current Testing (Up to 80% for 2014) - Lube Oil Tank Cleaning & Inspection (Last Done 2008) - Motor Refurbishments 4160v (Capital) - Re-Inspection of Erosion Shields on Row6 Blades from Inside Hot well - DCS Upgrades (Capital) - Natural Gas Igniters & Valves Upgrades (Capital) - High Cycle Valve Change Outs (Routines) - Replace Polisher Valves (Routines) - Change out Polisher Control Panels (Capital) - Unit 2 or 3 Vacuum Pump Replacements (Capital) - Breaker / Switchgear Replacements (Capital) Unit 3 – Minor Shutdown (3 Weeks October 2014 - Subject to change with Pending Capital Submission) - Routine Inspections/Assessments, Preventative Maintenance and Repairs - Replacement of North Drum Safety Valve (Pending Condition) - Overhaul & AVK of Boiler Pressure Safety Valves - Main Feed water Valve Overhauls - Continue Feedwater FAC & High Energy Piping - Re-Inspection of New Stub Keys on Row 21 Blades from Inside Hot well - Inspection of Bled Steam Non-Return Valves - Turbine Routine Inspections & Repairs Only - Assessment of Condenser Air Extraction Zone Corrosion Rate - Possible Turbine Lube Oil Purification Upgrade - West or East Condensate Ext. Pump Replacement/Refurb (Pending CAP) - Possible Air Heater / Preheater Adjustments - Motor Refurbishments 4160v (Capital) - DCS Upgrades (Capital) - Natural Gas Igniters & Valves Upgrades (Capital) - High Cycle Valve Change Outs (Routines) - Replace Polisher Valves (Routines) - Change out Polisher Control Panels (Capital)

- Hydrogen Panel Replacement (Capital)
- Condenser Tube Replacements (Capital)
- Breaker / Switchgear Replacements (Capital)

2016 ACE SBA IR-18 Attachment 6 Page 4 of 5

	MAJOR DELIVERABLES		
1	Known required (long lead) materials procured in advance and ETA tracked to delivery.		
2	Have all contract work identified and RFP's / RFQ's (Unit 1 Turbine Major) drafted for release allowing time for terms and conditions to be finalized. (+\$1M)		
3	Draft Scope of Shutdown Capital Projects & Maintenance Inspections / Repairs is developed with time & cost Estimates for Labor Staffing and accurate Budgeting.		
4	Validate scope of work with Asset Experts, Asset Management Group, OEMs, Ect.		
5	Draft more accurate shutdown budget requirements.		

ASSUMPTIONS

Economic outages will be assessed as they occur and the ability to reduce scope for the original outage will result on a case by case basis. As there is only one major turbine Inspection scheduled for 2014 (Unit1), there is a possibility for call backs in advance of one week notice and the ability to further take advantage of economic outages as they occur. Although in taking economic outages or call backs may reduce the completion percentage of the shutdown and some jobs may be cut from the scope. Opportunities may exist to reduce term labor and to focus plant maintenance staff on Capital work.

<u>NOTE 1:</u> Although a 3 week outage period is expected for units 2 & 3, these timelines may grow by 1-2 weeks with the possibility of larger capital projects being approved and driving the outage length.

<u>NOTE2:</u> Unit1 is scheduled off for a IP/LP Inspection in 2014 and a HP Inspection in 2016 based on hours. There is a good chance based the TGA assessment and the guidance of the Asset management office that the HP Inspection will be brought forward to 2014. This charter reflects the possibility that unit1 HP Turbine major will be completed in conjunction with the IP/LP Inspections in 2014.

<u>NOTE3:</u> Unit1 Air heater & Unit3 Condenser will require significant capital investment in the coming years to improve efficiency and integrity, this possible investment is captured in the 5 year plan but omitted in this charter pending engineering assessment for economics & viability.

MILESTONES		Date	
1	End of Q1 – Finalized work plan, draft capital list, draft budget	March 31, 2013	
2	End of Q2 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2013	
3	End of Q3 – Finalized budget, capital program and maintenance scope.	September 30, 2013	

HIGH LEVEL OM&G BUDGET		Amount
1	Unit 1 – Major Shutdown (10 Weeks March 2014)	1,950,000
2	Unit 2 – Minor Shutdown (3 Weeks May 2014)	880,000
3	Unit 3 – Minor Shutdown (3 Weeks October 2014)	750,000
	Total Budget	3,200,000

2016 ACE SBA IR-18 Attachment 6 Page 5 of 5

HIGH LEVEL CAPITAL BUDGET		Amount
1	Unit 1 – Major Shutdown (10 Weeks March 2014)	3.400,000
2	Unit 2 – Minor Shutdown (3 Weeks May 2014)	830,000
3	Unit 3 – Minor Shutdown (3 Weeks October 2014)	1,080,000
Total Budget		5,310,000

	MAJOR RISKS	Probability (H,M,L)	Impact to Project (H,M,L)	
1	Unit 1 - Turbine Inspection Contingencies are not in place, a major turbine capital replacement is not identified and budgeted prior to outage, Turbine inspections reveals unforeseen and unplanned costs	Med	High	
2	All Units - Financial, Capital, Planning & Procurement Deadlines are not met in a timely manner.	Low	Med	
3	All Units – Large amount of Capital and Major Shutdown Work/Assessments from 2013 Carry Over to Effect Scope and deadlines for 2014.	Low	Med	
Define	Define mitigation and / or contingency strategies where Probability or Impact are High:			

Unit 1 - Turbine Inspection Contingencies are not in place, a major turbine capital replacement is not identified and budgeted prior to outage, Turbine inspections reveals unforeseen and unplanned costs.

Unidentified and unforeseen costs can be mitigated by reviewing TGA documentation, reviewing past history and consulting with the Asset Management Office subject matter experts to set up effective contingency plans for both suspect and unknown issues that may be encountered during the turbine inspections. These may include but are not limited to, setting up suppliers, manufactures and service providers for quick turnarounds to mitigate logistic & procurement problems. Consulting with OEM or aftermarket suppliers to discuss options for long lead items, and adding the appropriate contingencies based on history to our budgets, and exploring various repair options for large items prior to shutdown.

AGREED			
Shutdown Manager		Date	
Shutdown Owner		Date	
Executive Owner		Date	

2016 ACE SBA IR-18 Attachment 7 Page 1 of 6

OUTAGE CHARTER		
Project Name	2015 Outage Charter	
Executive Owner	Dave Pickles	
Outage Owner	Jamie MacDonald	
Outage Manager	Jerry Bedecki	

BACKGROUND INFORMATION

The Charter is based on the Standardized Outage Quality Process. It Identifies our major Outage Deliverables for 2015 and provides a high level overview.

In 2015 there are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be in an Outage. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs.

These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, and Regulatory Time Stamped Requirements.

SAFETY PLAN

- The Lingan Generating Station is committed to an accident-free workplace and will be committing to early identification and mitigation of any risks that pose a threat to employee safety.
- A Safety Stand Down will be coordinated early in the outage schedule, engaging all staff & contractors.
- A Safety Officer will be utilized on outages to assisting in promoting safety awareness, job observation, risk assessments, housekeeping, restricted area identification, incident reporting, and first aid attendant.
- 4) Outage Preparation will ensure that equipment and work Areas are properly inspected and safe for use before Outage begins (Cranes, Lifting Gear, Lighting, vehicles, etc.)
- Safety Issues and concerns will be discussed with Package Owners and Leads during regular Outage meetings.
- 6) All aspects of NSPI's Safety Program will be maintained during the Outage.
- All Safety Documentation (Incident Reports, Observation Reports, Risk Assessments, etc.) managed by the Safety Officer will be Recorded & Filed along with the Outage Report for History and Lessons Learned Purposes.
- 8) Plant Clean-ups will be conducted before, during and after Outages as required to ensure that the Plant remains Clean and Safe to work in. The Safety Officer will monitor work sites for congestion and cleanliness and mitigate any issues.
- Site Emergency Response personnel will be updated by the Safety Officer as to what confined space, high angle, and other hazardous work is commencing and advise supervisors to staff ERT members as required.

	OUTAGE OBJECTIVES
1	No Lost time or Medical Aid Incidents.
2	Execute the planned work during the outages safely, on time and on budget.
3	At least 90% completion of identified Plant Outage scope (project work, PMs, defects, etc.)
4	Address all known plant issues that affect unit reliability and performance.
5	Document the outage to support both internal, and external auditing processes.

2016 ACE SBA IR-18 Attachment 7 Page 2 of 6

ROLE	RESPONSIBILITIES
Executive Owner	Promotes Health & Safety Provides the leadership, priority and commitment to the Outage scope from the senior executive perspective. Serves as liaison to the NSPI Leadership Team, communicating the Outage objectives and assuring proper resourcing.
Outage Owner	Promotes Health & Safety Actively champions and promotes the Outage work scope. Clarifies Outage objectives and deliverables. Assists with the resolution of issues that cannot be resolved by the Outage manager. Helps remove obstacles to success.
Outage Manager	Promotes Health & Safety Has overall accountability for the successful execution of the maintenance Outage in terms of scope, cost, schedule, and quality and customer satisfaction, from initial involvement to completion. Provides ongoing direction, motivation and support to plant staff and other Outage resources. Continually ensures effective communication with key Outage stakeholders. Proactively monitors Outage performance and ensures appropriate action is taken to address risks and issues. Ensures proper documentation is created, maintained and archived.

UNIT OUTAGE OVERVIEW

Unit 1

General: Minor Outage, 3 Weeks

Capital:

Boiler refurbishment BFP Prop valve installation Load load lines and valves

Operating:

NERC PMs – relays and UPS HEP/FAC inspections Turbine LP Last Stage Blade inspection (contingency plan required) Main stop valve and governer valve inspection (contingency plan required)

2016 ACE SBA IR-18 Attachment 7 Page 3 of 6

Unit 2

General: Minor Outage, 3 Weeks

Capital: Burner Front Replacement Boiler Refurbishment

Operating: NERC PMs – relays and UPS HEP/FAC inspections Turbine LP Last Stage BladeLH & RH inspection (contingency plan required)

Unit 3

General: Major Outage, 9 Weeks (chemical clean is the driver for 9 weeks)

Capital:

Turbine Major (some contingency planning required) L-0 Blade Replacement Valve Overhaul LP gland refurbishment Mechanical governmor refurbishment Generator rotor re-wind Boiler division wall Boiler chemical cleaning Condenser Large Bore piping and valves AVR Replacement **Turbine Fastener Replacement HVB** Replacement DAS Replacement **Boiler Refurbishment** CC Blade Replacement, Rows 8, 9, 10 SCC Replacement Air Heater baskets and Seals **Burner Front Replacements Chemical Sampling Panel ICV Ring Replacement**

Operating: NERC PMs – relays and UPS HEP/FAC inspections Turbine LP Last Stage LH & RH Blade replacement(contingency plan required Possible generator stator re-wedge (contingency plan required)

NOTE: Under discussion, consider moving boiler work to Unit 4 for 2015 which relieves some pressure on the Unit 3 major in 2015. Spreads the load for Unit 3 major work over 2 years. Same will hold true for Unit 4 whose major is due in 2016. AMO and Power Production management.

2016 ACE SBA IR-18 Attachment 7 Page 4 of 6

Unit 4

General: Minor Outage, 3 Weeks

Capital: Boiler Refurbishment

Operating: NERC PMs – relays and UPS HEP/FAC inspections Turbine LP Last Stage Blade LH & RH inspection (contingency plan required) Main stop valve inspection (contingency plan required)

NOTE: Under discussion, consider moving boiler work to Unit 4 for 2015 which relieves some pressure on the Unit 3 major in 2015. Spreads the load for Unit 3 major work over 2 years. Same will hold true for Unit 4 whose major is due in 2016. AMO and Power Production management.

MAJOR DELIVERABLES		
1	Known required (long lead) materials procured in advance and ETA tracked to delivery.	
2	Have all contract work identified and RFP's / RFQ's drafted for release allowing time for terms and conditions to be finalized and Contracts awarded in advance of outage start.	
3	Draft Scope of Outage Capital Projects & Maintenance Inspections / Repairs is developed with time & cost estimates for labor and accurate budgeting.	
4	Validate scope of work with Asset Experts, Asset Management Group, OEMs, etc.	
5	Deliverables as identified through the Outage Standardization process (minutes, Org chart, reports, Work Packages) and thorough recording of risks and change during outage execution.	
6	Use of tools developed through the Outage Standardization Process, such as Milestones, during preparation and planning.	

ASSUMPTIONS

Economic outages will be assessed as they occur, and the ability to execute scope during this outage and therefore reduce the original defined Outage scope (and therefore term labour requirements etc.) will be evaluated at each opportunity.

MILESTONES		Date	
1	End of Q1, 2014 - Finalized work plan, draft capital list, draft budget	March 31, 2014	
2	End of Q2, 2014 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2014	
3	End of Q3, 2014 – Finalized budget, capital program and maintenance scope.	September 30, 2014	

	HIGH LEVEL OM&G BUDGET	Amount
1	Unit 1 – Minor Outage	515K
2	Unit 2 – Minor Outage	750K
3	Unit 3 – Major Outage	1,805K
4	Unit 4 – Minor Outage)	515K
	Total Budget	3,585K

2016 ACE SBA IR-18 Attachment 7 Page 5 of 6

	HIGH LEVEL CAPITAL BUDGET (outage scope only)	Amount	Totals
Unit 1	Boiler Refurbishment	\$500,000	
	BFP Prop Valve Installation	\$237,000	1.1
	Low Load Line and Valves	\$26,000	\$763,000
Unit 2	Burner Front Replacement	\$301,000	
	Boiler Refurbishment	\$250,000	\$551,000
Unit 3	LIN3 L-0 Blade Replacement	\$3,825,903.91	
201	LIN3 Rotor Rewind	\$2,740,664.90	
	LIN3 Condenser Large Bore Piping and Valves Refurbishment	\$1,137,288.05	
	LIN3 AVR Replacement	\$818,814.33	
	LIN3 Turbine Fastners Replacement	\$779,269.19	
-	LIN3 HVB Replacement	\$570,532.51	
_	LIN3 DAS Replacement	\$567,748.41	
	LIN3 Boiler Refurbishment	\$500,555.00	
	LIN3 CC BLADE REPL. ROWS 8,9,10	\$500,555.00	
	LIN3 SCC Replacement	\$500,555.00	_
2	LIN3 Division Wall	\$500,000.00	
1	LIN3 Air Heater Baskets and Seals	\$500,000.00	
1.1	LIN3 Boiler Chem Clean	\$450,000.00	
	LIN3 Gen Stator Rewedge	\$400,000.00	
	LIN3 REPLACE BURNER FRONT COMPONENTS	\$300,000.00	
-	LIN3 Chem Sampling Panel	\$250,000.00	
2	LIN3 TURBINE VALVES REFURBISHMENT	\$161,039.00	
-	LIN3 Condenser Plasticor Inserts	\$150,000.00	
	LIN3 LP Gland repair	\$100,000.00	
	LIN3 Turbine Run Up Modifications (re: two-shift)	\$50,000.00	
	LIN3 ICV ring replacement LIN3 LP Gland repair LIN 3 Governor refurbishment	\$50,000.00	
	LIN3 Governor refurbishment	\$50,000.00	\$14,903,000
Unit 4	Boiler Refurbishment	\$500,000	\$500,000
	Total Budget	\$16,717,000	\$16,717,000

2016 ACE SBA IR-18 Attachment 7 Page 6 of 6

MAJOR RISKS		Probability (H,M,L)	Impact to Project (H,M,L)
1	All Units: All turbine inspection work may result in additional scope. Contingency plans are to be developed for the areas noted above.	Low	High
2	All Units: Late identification of scope may result in unpreparedness for outage (budget item not identified, contract not in place, materials not delivered)	Low	Med
	Define mitigation and / or contingency strategies where Proba	bility or Impact are	e High:
1.	. Work with AMO personnel and technical experts to ensure appropriate contingency plans are place.		
2.	 Learn from history to help develop and budget for these plans. Using tools such as the Outage Scope Development checklist and Milestones should mitig the risk of unidentified scope 		hould mitigate

AGREED			
Outage Manager	G. Bedecki	Date	Jun.27, 2014
Outage Owner	Jamie MacDonald	Date	July 14, 2014
Executive Owner	1.766	Date	Seit 4/14

2016 ACE SBA IR-18 Attachment 8 Page 1 of 4

OUTAGE CHARTER		
Project Name	2015 Outage Charter	
Executive Owner	Dave Pickles	
Outage Owner	Jeff Campbell	
Outage Manager	Ray Barrett	

BACKGROUND INFORMATION

The Charter is based on the Standardized Outage Quality Process. It Identifies our major Outage Deliverables for 2015 and provides a high level overview.

In 2015 there are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be in an Outage. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs.

These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, and Regulatory Time Stamped Requirements

SAFETY PLAN

- The Point Tupper Biomass Generating Facility is committed to an accident-free workplace and will be committing to early identification and mitigation of any risks that pose a threat to employee safety.
- A Safety Stand Down will be coordinated early in the outage schedule, engaging all staff & contractors.
- A Safety Officer will be utilized on outages to assisting in promoting safety awareness, job observation, risk assessments, housekeeping, restricted area identification, incident reporting, and first aid attendant.
- 4) Outage Preparation will ensure that equipment and work Areas are properly inspected and safe for use before Outage begins (Cranes, Lifting Gear, Lighting, vehicles, etc.)
- Safety Issues and concerns will be discussed with Package Owners and Leads during regular Outage meetings.
- 6) All aspects of NSPI's Safety Program will be maintained during the Outage.
- All Safety Documentation (Incident Reports, Observation Reports, Risk Assessments, etc.) managed by the Safety Officer will be Recorded & Filed along with the Outage Report for History and Lessons Learned Purposes.
- 8) Plant Clean-ups will be conducted before, during and after Outages as required to ensure that the Plant remains Clean and Safe to work in. The Safety Officer will monitor work sites for congestion and cleanliness and mitigate any issues.
- Site Emergency Response personnel will be updated by the Safety Officer as to what confined space, high angle, and other hazardous work is commencing and advise supervisors to staff ERT members as required.

OUTAGE OBJECTIVES	
1	No Lost Time or Medical Aid Incidents
2	Execute the planned work during the outages safely, on time and on budget.
3	At least 90% completion of identified Plant Outage scope (project work, PMs, defects, etc.)
4	Address all known plant issues that affect unit reliability and performance.
5	Document the outage to support both internal, and external auditing processes.

2016 ACE SBA IR-18 Attachment 8 Page 2 of 4

ROLE	RESPONSIBILITIES
Executive Owner	Promotes Health & Safety Provides the leadership, priority and commitment to the Outage scope from the senior executive perspective. Serves as liaison to the NSPI Leadership Team, communicating the Outage objectives and assuring proper resourcing.
Outage Owner	Promotes Health & Safety Actively champions and promotes the Outage work scope. Clarifies Outage objectives and deliverables. Assists with the resolution of issues that cannot be resolved by the Outage manager. Helps remove obstacles to success.
Outage Manager	Promotes Health & Safety Has overall accountability for the successful execution of the maintenance Outage in terms of scope, cost, schedule, and quality and customer satisfaction, from initial involvement to completion. Provides ongoing direction, motivation and support to plant staff and other Outage resources. Continually ensures effective communication with key Outage stakeholders. Proactively monitors Outage performance and ensures appropriate action is taken to address risks and issues. Ensures proper documentation is created, maintained and archived.

UNIT OUTAGE OVERVIEW

General:

Minor Outage, 3 weeks (Q2 2015)

Capital:

- PHB Trancel Screw Annual Refurbishment
- PHB Boiler Fuel System Refurbishment
- PHB Ash/Precipitator System Refurbishment
- PHB ID Fan Inlet Duct Replacement
- PHB Electromatic Relief Valve Replacement
- PHB Safety Shower Upgrades
- PHB Backup Boiler Feed Pump Conversion to Electric
- PHB Dept 16, Bark Handling Systems
- PHB Dept 17, Chip Handling Systems
- PHB A-Frame & Boiler Feeds

Operating:

- CW culvert Inspection/Cleaning
- TMP compliance
- PM Outage compliance
- Fuel system maintenance
- Distributing conveyor
- Bottom ash conveyor
- Superheater inspection
- Ash bunker work
- Safety valve refurbishment.
- Boiler inspection, repair

2016 ACE SBA IR-18 Attachment 8 Page 3 of 4

	MAJOR DELIVERABLES		
1	Known required (long lead) materials procured in advance and ETA tracked to delivery.		
2	Have all contract work identified and RFP's / RFQ's drafted for release allowing time for terms and conditions to be finalized and Contracts awarded in advance of outage start.		
3	Draft Scope of Outage Capital Projects & Maintenance Inspections / Repairs is developed with time & cost estimates for labor and accurate budgeting.		
4	Validate scope of work with Asset Experts, Asset Management Group, OEMs, etc.		
5	Deliverables as identified through the Outage Standardization process (minutes, Org chart, reports, Work Packages) and thorough recording of risks and change during outage execution.		
6	Use of tools developed through the Outage Standardization Process, such as Milestones, during preparation and planning.		

ASSUMPTIONS

Economic outages will be assessed as they occur, and the ability to execute scope during this outage and therefore reduce the original defined Outage scope (and therefore term labour requirements etc.) will be evaluated at each opportunity.

	MILESTONES	Date
1	End of Q1, 2014 – Finalized work plan, draft capital list, draft budget	March 31, 2014
2	End of Q2, 2014 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2014
3	End of Q3, 2014 – Finalized budget, capital program and maintenance scope.	September 30, 2014

HIGH LEVEL OM&G BUDGET		Amount
1	Boiler Pressure Parts Inspection and Repair	\$100,000
2	Safety Valve Refurbishment	\$50,000
3	Boiler Fuel System Refurbishment	\$172,000
4	CW System Inspection and Accessibility Modifications	\$40,000
5	Shutdown Confined Space Attendants, Scaffolding Support, ERT crew.	\$125,000
6	Turbine Generator	\$40,000
7	Zone support	\$20,000
8	Labour	\$230,000
9	Rentals	\$37,000
10	Precipitator inspection and repair	\$25,000
11	Consumables	\$11,000
-	Total Budget	\$850,000

2016 ACE SBA IR-18 Attachment 8 Page 4 of 4

HIGH LEVEL CAPITAL BUDGET		Amount
1	PHB - Boiler Kablitz and Internal Refurbishment	\$225,000
2	PHB - Trancel Screw Annual Refurbishment	\$134,000
	PHB - Ash Conveyors System Refurbishment	\$100,000
5	PHB - ID Fan Inlet Duct Replacement	\$352,132
3	PHB - Dept 16, Bark Handling Systems	\$50,000
,	PHB - Dept 17, Chip Handling Systems	\$25,000
3	PHB - A-Frame & Boiler Feeds	\$50,000
-		\$961,132

MAJOR RISKS		Probability (H,M,L)	Impact to Project (H,M,L)
1	All turbine, generator and boiler inspection work may result in additional scope. Contingency plans are to be developed for the areas noted above.	Low	High
2	Late identification of scope may result in unpreparedness for outage (budget item not identified, contract not in place, materials not delivered)	Low	Med
	Define mitigation and / or contingency strategies where Proba	bility or Impact are	e High:

- 1. Work with AMO personnel and technical experts to ensure appropriate contingency plans are in place.
- 2. Learn from history to help develop and budget for these plans.
- 3. Using tools such as the Outage Scope Development checklist and Milestones should mitigate the risk of unidentified scope

Outage Manager	Raymond Barrett	Date	Aug.14, 2014
Outage Owner	Jeff Campbell	Date	Aug.14, 2014
Executive Owner	1,400	Date	Sert4/14

2016 ACE SBA IR-18 Attachment 9 Page 1 of 4

OUTAGE CHARTER		
Project Name	2015 Outage Charter	
Executive Owner	Dave Pickles	
Outage Owner	Ron MacNeil	
Outage Manager	Bill Harris	

BACKGROUND INFORMATION

The Charter is based on the Standardized Outage Quality Process. It Identifies our major Outage Deliverables for 2015 and provides a high level overview.

In 2015 there are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be in an Outage. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs.

These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, and Regulatory Time Stamped Requirements.

SAFETY PLAN

- Point Aconi is committed to an accident-free workplace and will be committing to early identification and mitigation of any risks that pose a threat to employee safety.
- A Safety Stand Down will be coordinated early in the outage schedule, engaging all staff & contractors.
- A dedicated Safety Officer will be utilized on outages to assisting in promoting safety awareness, job observation, risk assessments, housekeeping, restricted area identification, incident reporting, and first aid attendant.
- 4) Outage Preparation will ensure that equipment and work Areas are properly inspected and safe for use before Outage begins (Cranes, Lifting Gear, Lighting, vehicles, etc.)
- Safety Issues and concerns will be discussed with Package Owners and Leads during regular Outage meetings.
- 6) All aspects of NSPI's Safety Program will be maintained during the Outage.
- All Safety Documentation (Incident Reports, Observation Reports, Risk Assessments, etc.) managed by the Safety Officer will be Recorded & Filed along with the Outage Report for History and Lessons Learned Purposes.
- 8) Plant Clean-ups will be conducted before, during and after Outages as required to ensure that the Plant remains Clean and Safe to work in. The Safety Officer will monitor work sites for congestion and cleanliness and mitigate any issues.
- Site Emergency Response personnel will be updated by the Safety Officer as to what confined space, high angle, and other hazardous work is commencing and advise supervisors to staff ERT members as required.

OUTAGE OBJECTIVES	
1	No Accidents.
2	Execute the planned work during the outages safely, on time and on budget.
3	At least 90% completion of identified Plant Outage scope (project work, PMs, defects, etc.)
4	Address all known plant issues that affect unit reliability and performance.
5	Document the outage to support both internal, and external auditing processes.

2016 ACE SBA IR-18 Attachment 9 Page 2 of 4

ROLE	RESPONSIBILITIES	
Executive Owner	Promotes Health & Safety Provides the leadership, priority and commitment to the Outage scope from the senior executive perspective. Serves as liaison to the NSPI Leadership Team, communicating the Outage objectives and assuring proper resourcing.	
Outage Owner	Promotes Health & Safety Actively champions and promotes the Outage work scope. Clarifies Outage objectives and deliverables. Assists with the resolution of issues that cannot be resolved by the Outage manager. Helps remove obstacles to success.	
Outage Manager	Promotes Health & Safety Has overall accountability for the successful execution of the maintenance Outage in terms of scope, cost, schedule, and quality and customer satisfaction, from initial involvement to completion. Provides ongoing direction, motivation and support to plant staff and other Outage resources. Continually ensures effective communication with key Outage stakeholders. Proactively monitors Outage performance and ensures appropriate action is taken to address risks and issues. Ensures proper documentation is created, maintained and archived.	

UNIT OUTAGE OVERVIEW

Unit 1

General:

Minor Outage, 4 weeks

Capital:

Boiler Refractory Replacement Boiler Refurbishment UPS Battery Chargers Replacement Boiler Arrowhead Replacement Screw Cooler Trough Replacement Stack Lighting Replacement Limestone Piping Refurbishment Valve Component Replacement Expansion Joint Replacement

Operating:

Boiler Inspection Boiler Deslag and Cleaning CW Inspection Frontwall Ribbon Replacement and Repair Thermocouple Replacement Ash Silo PM and Filter Separator Bag Replacement Bottom Ash Screw Cooler PM's and Screw Overlay Safety Valve Refurbishment and Inspection NERC PMs – relays and UPS HEP/FAC inspections Turbine LP (subject to change after completion of 2014 outage)

2016 ACE SBA IR-18 Attachment 9 Page 3 of 4

	MAJOR DELIVERABLES	
1	Known required (long lead) materials procured in advance and ETA tracked to delivery.	
2	Have all contract work identified and RFP's / RFQ's drafted for release allowing time for terms and conditions to be finalized and Contracts awarded in advance of outage start.	
3	Draft Scope of Outage Capital Projects & Maintenance Inspections / Repairs is developed with time & cost estimates for labor and accurate budgeting.	
4	Validate scope of work with Asset Experts, Asset Management Group, OEMs, etc.	
5	Deliverables as identified through the Outage Standardization process (minutes, Org chart, reports, Work Packages) and thorough recording of risks and change during outage execution.	
6	Use of tools developed through the Outage Standardization Process, such as Milestones, during preparation and planning.	

ASSUMPTIONS

Economic outages will be assessed as they occur, and the ability to execute scope during this outage and therefore reduce the original defined Outage scope (and therefore term labour requirements etc.) will be evaluated at each opportunity.

MILESTONES		Date	
1	End of Q1, 2014 – Finalized work plan, draft capital list, draft budget	March 31, 2014	
2	End of Q2, 2014 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2014	
3	End of Q3, 2014 – Finalized budget, capital program and maintenance scope. May require re-validating after completion of 2014 Outage.	September 30, 2014	

HIGH LEVEL OM&G BUDGET		Amount
1	Labour	255,895
2	Other Non-Labour	0
3	Materials	388,740
4	Contracts	705,300
	Total Budget	1,349,935

2016 ACE SBA IR-18 Attachment 9 Page 4 of 4

HIGH LEVEL CAPITAL BUDGET (outage scope only)		Amount	
1	Boiler Refractory Replacement	\$751,000	
2	Boiler Refurbishment	\$242,000	
3	UPS Battery Chargers Replacement	\$201,000	
4	Boiler Arrowhead Replacement	\$195,000	
5	Screw Cooler Trough Replacement	\$188,000	
6	Stack Lighting Replacement	\$148,000	
7	Limestone Piping Refurbishment	\$100,000	
8	Valve Component Replacement	\$87,000	
9	Expansion Joint Replacement	\$66,000	
	Total Budget	\$1,978,000	

MAJOR RISKS Probability P			Impact to Project (H,M,L)
1	Excessive Wear on Boiler Pressure Parts.	Low	Med
2	All turbine inspection work may result in additional scope. Contingency plans are to be developed for the areas noted above.	Low	High
3	Late identification of scope may result in unpreparedness for outage (budget item not identified, contract not in place, materials not delivered)	Low	Med

1. Start inspecting the boiler as early as possible, the plan is to not work weekend, but will be available if extra boiler repairs are required.

2. Work with AMO personnel and technical experts to ensure appropriate contingency plans are in place.

Learn from history to help develop and budget for these plans.

3. Using tools such as the Outage Scope Development checklist and Milestones should mitigate the risk of unidentified scope

AGREED			
Outage Manager	Bill Harris	Date	July 29, 2014
Outage Owner	Ron MacNeil	Date	July 29, 2014
Executive Owner	1.726	Date	Sept 4/14

2016 ACE SBA IR-18 Attachment 10 Page 1 of 5

OUTAGE CHARTER		
Project Name	2015 Outage Charter	
Executive Owner	Dave Pickles	
Outage Owner	Jeff Campbell	
Outage Manager	Ray Barrett	

BACKGROUND INFORMATION

The Charter is based on the Standardized Outage Quality Process. It Identifies our major Outage Deliverables for 2015 and provides a high level overview.

In 2015 there are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be in an Outage. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs.

These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, and Regulatory Time Stamped Requirements

SAFETY PLAN

- 1) Point Tupper is committed to an accident-free workplace and will be committing to early identification and mitigation of any risks that pose a threat to employee safety.
- A Safety Stand Down will be coordinated early in the outage schedule, engaging all staff & contractors.
- A Safety Officer will be utilized on outages to assisting in promoting safety awareness, job observation, risk assessments, housekeeping, restricted area identification, incident reporting, and first aid attendant.
- 4) Outage Preparation will ensure that equipment and work Areas are properly inspected and safe for use before Outage begins (Cranes, Lifting Gear, Lighting, vehicles, etc.)
- Safety Issues and concerns will be discussed with Package Owners and Leads during regular Outage meetings.
- 6) All aspects of NSPI's Safety Program will be maintained during the Outage.
- All Safety Documentation (Incident Reports, Observation Reports, Risk Assessments, etc.) managed by the Safety Officer will be Recorded & Filed along with the Outage Report for History and Lessons Learned Purposes.
- 8) Plant Clean-ups will be conducted before, during and after Outages as required to ensure that the Plant remains Clean and Safe to work in. The Safety Officer will monitor work sites for congestion and cleanliness and mitigate any issues.
- 9) Site Emergency Response personnel will be updated by the Safety Officer as to what confined space, high angle, and other hazardous work is commencing and advise supervisors to staff ERT members as required.

OUTAGE OBJECTIVES	
1	No Lost Time or Medical Aid Incidents
2	Execute the planned work during the outages safely, on time and on budget.
3	At least 90% completion of identified Plant Outage scope (project work, PMs, defects, etc.)
4	Address all known plant issues that affect unit reliability and performance.
5	Document the outage to support both internal, and external auditing processes.

2016 ACE SBA IR-18 Attachment 10 Page 2 of 5

ROLE	RESPONSIBILITIES
Executive Owner	Promotes Health & Safety Provides the leadership, priority and commitment to the Outage scope from the senior executive perspective. Serves as liaison to the NSPI Leadership Team, communicating the Outage objectives and assuring proper resourcing.
Outage Owner	Promotes Health & Safety Actively champions and promotes the Outage work scope. Clarifies Outage objectives and deliverables. Assists with the resolution of issues that cannot be resolved by the Outage manager. Helps remove obstacles to success.
Outage Manager	Promotes Health & Safety Has overall accountability for the successful execution of the maintenance Outage in terms of scope, cost, schedule, and quality and customer satisfaction, from initial involvement to completion. Provides ongoing direction, motivation and support to plant staff and other Outage resources. Continually ensures effective communication with key Outage stakeholders. Proactively monitors Outage performance and ensures appropriate action is taken to address risks and issues. Ensures proper documentation is created, maintained and archived.

UNIT OUTAGE OVERVIEW

Unit 2

General: Minor Outage, 4 weeks

Capital:

Boiler Refurbishment #5 HP Heater Replacement MCC Controls Upgrade North Steam Coil Replacement Coal Nozzle &Bucket Replacement AVR Replacement O2 analyzers Turbine steam chest overhaul (governor valve, etc.) CW Pump rebuild (pending 2014 inspection) Stack Repairs Flame Scanner Replacement DW Cooler Refurbishment/replacement Condenser level control replacement

South Boiler Feedpump (pending pump performance test, not currently listed in Capital budget) Partial Rotor Re-wind (see Major Risks section below, not currently listed in Capital budget)

Operating:

HEP/FAC (~\$20K anticipated) NERC – relays/UPS Turbine LP Last Stage (LH & RH and R21) Blade inspection (contingency plan required)

2016 ACE SBA IR-18 Attachment 10 Page 3 of 5

-	MAJOR DELIVERABLES
1	Known required (long lead) materials procured in advance and ETA tracked to delivery.
2	Have all contract work identified and RFP's / RFQ's drafted for release allowing time for terms and conditions to be finalized and Contracts awarded in advance of outage start.
3	Draft Scope of Outage Capital Projects & Maintenance Inspections / Repairs is developed with time & cost estimates for labor and accurate budgeting.
4	Validate scope of work with Asset Experts, Asset Management Group, OEMs, etc.
5	Deliverables as identified through the Outage Standardization process (minutes, Org chart, reports, Work Packages) and thorough recording of risks and change during outage execution.
6	Use of tools developed through the Outage Standardization Process, such as Milestones, during preparation and planning.

ASSUMPTIONS

Economic outages will be assessed as they occur, and the ability to execute scope during this outage and therefore reduce the original defined Outage scope (and therefore term labour requirements etc.) will be evaluated at each opportunity.

	MILESTONES	Date	
1	End of Q1, 2014 - Finalized work plan, draft capital list, draft budget	March 31, 2014	
2	End of Q2, 2014 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2014	
3	End of Q3, 2014 – Finalized budget, capital program and maintenance scope.	September 30, 2014	

HIGH LEVEL OM&G BUDGET		Amount
1	Overtime Labour	50K
2	Term Labour	82K
3	Rental	10K
4	Personal Equipment	5K
5	Contracts	311K
6	Material	200K
	Total Budget	658K

2016 ACE SBA IR-18 Attachment 10 Page 4 of 5

Ĩ.

HIGH LEVEL CAPITAL BUDGET (outage scope only)		Amount	
1	Boiler Refurbishment	\$800,000	
2	#5 HP Heater Replacement	\$800,000	
3	MCC Controls Upgrade	\$690,000	
4	North Steam Coil Replacement	\$340.000	
5	Coal Nozzle & Bucket Replacement	\$340,000	
6	AVR Replacement	\$300,000	
7	Turbine steam chest overhaul (governor valve, etc.)	\$250,000	
8	CW Pump rebuild (pending 2014 inspection)	\$200,000	
9	Stack Repairs	\$100,000	
10	Flame Scanner Replacement	\$100,000	
11	DW Cooler Refurbishment/replacement	\$100,000	
12	Condenser level control replacement	\$100,000	
13	O2 Analyzers	\$75,000	
		\$4,195,000	

	MAJOR RISKS	Probability (H,M,L)	Impact to Project (H,M,L)
1	All turbine inspection work may result in additional scope. Contingency plans are to be developed for the areas noted above.	Low	High
2	Late identification of scope may result in unpreparedness for outage (budget item not identified, contract not in place, materials not delivered)	Low	Med
3	Generator rotor partial re-wind is being evaluated based on recent experience at TUC3. If deemed necessary, this activity may drive an increase in the outage duration.	Med	High
	Define mitigation and / or contingency strategies where Proba	bility or Impact are	e High:
1.	Work with AMO personnel and technical experts to ensure ap place.		ncy plans are
2.	Learn from history to help develop and budget for these plans		and a state of the

 Using tools such as the Outage Scope Development checklist and Milestones should mitigate the risk of unidentified scope

2016 ACE SBA IR-18 Attachment 10 Page 5 of 5

AGREED			
Outage Manager	Ray Barrett	Date	June 18, 2014
Outage Owner	Jeff Campbell	Date	July 18, 2014 ,
Executive Owner	1.766	Date	5-0+4/14

2016 ACE SBA IR-18 Attachment 11 Page 1 of 5

Outage Charter

OUTAGE CHARTER		
Project Name	2015 Outage Charter	
Executive Owner	Dave Pickles	
Outage Owner	Stewart Whynott	
Outage Manager	Dion Antle	

BACKGROUND INFORMATION

The Charter is based on the Standardized Outage Quality Process. It Identifies our major Outage Deliverables for 2015 and provides a high level overview.

In 2015 there are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be in an Outage. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs.

These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, and Regulatory Time Stamped Requirements.

SAFETY PLAN

- Trenton is committed to an accident-free workplace and will be committing to early identification and mitigation of any risks that pose a threat to employee safety.
- A Safety Stand Down will be coordinated early in the outage schedule, engaging all staff & contractors.
- A Safety Officer will be utilized on outages to assisting in promoting safety awareness, job observation, risk assessments, housekeeping, restricted area identification, incident reporting, and first aid attendant.
- 4) Outage Preparation will ensure that equipment and work Areas are properly inspected and safe for use before Outage begins (Cranes, Lifting Gear, Lighting, vehicles, etc.)
- Safety Issues and concerns will be discussed with Package Owners and Leads during regular Outage meetings.
- 6) All aspects of NSPI's Safety Program will be maintained during the Outage.
- All Safety Documentation (Incident Reports, Observation Reports, Risk Assessments, etc.) managed by the Safety Officer will be Recorded & Filed along with the Outage Report for History and Lessons Learned Purposes.
- 8) Plant Clean-ups will be conducted before, during and after Outages as required to ensure that the Plant remains Clean and Safe to work in. The Safety Officer will monitor work sites for congestion and cleanliness and mitigate any issues.
- 9) Site Emergency Response personnel will be updated by the Safety Officer as to what confined space, high angle, and other hazardous work is commencing and advise supervisors to staff ERT members as required.

OUTAGE OBJECTIVES	
1	No Lost Time or Medical Aid Incidents
2	Execute the planned work during the outages safely, on time and on budget.
3	At least 90% completion of identified Plant Outage scope (project work, PMs, defects, etc.)
4	Address all known plant issues that affect unit reliability and performance.
5	Document the outage to support both internal, and external auditing processes.

2016 ACE SBA IR-18 Attachment 11 Page 2 of 5

Outage Charter

ROLE	RESPONSIBILITIES
Executive Owner	Promotes Health & Safety Provides the leadership, priority and commitment to the Outage scope from the senior executive perspective. Serves as liaison to the NSPI Leadership Team, communicating the Outage objectives and assuring proper resourcing.
Outage Owner	Promotes Health & Safety Actively champions and promotes the Outage work scope. Clarifies Outage objectives and deliverables. Assists with the resolution of issues that cannot be resolved by the Outage manager. Helps remove obstacles to success.
Outage Manager	Promotes Health & Safety Has overall accountability for the successful execution of the maintenance Outage in terms of scope, cost, schedule, and quality and customer satisfaction, from initial involvement to completion. Provides ongoing direction, motivation and support to plant staff and other Outage resources. Continually ensures effective communication with key Outage stakeholders. Proactively monitors Outage performance and ensures appropriate action is taken to address risks and issues. Ensures proper documentation is created, maintained and archived.

UNIT OUTAGE OVERVIEW

Unit 5

General:

Minor Outage, 4 weeks

Capital:

Turbine Valves (main stop valve, control valves) **Baghouse Bag replacements** Air Heater - reinstall Basket Grids and Structural repair Boiler select tube replacements Burner refurbishments Tundish drain replacement CW Screen refurbishment Burner Management System replacement (I&E) 5-1 CE Pump refurbishment Battery bank replacement Coal Run - Belts, Reclaim Hoppers, F belt and E belt gearbox replacements **Baghouse Bag Replacement Operating:** NERC PMs - generator protection relays calibrations and battery testing Motor protection relay calibrations and generator testing (doble testing partial discharge testing, etc.) Turbine LP LAst Stage Blade inspection (contingency plan required) Primary Air Heater repairs Main Feedwater Valve - inspection HP Heaters valve repairs ID Fan Discharge Dampers and VIVs FD & PA Fan VIVs Various valve repairs Safety valve rebuild / calibrations Instrument calibrations Precipitator inspection and repairs Main steam valve weld inspection (contingency plan required) HEP/FAC inspections (note, no funding has been included in the OM&G budget for this work while awaiting development of the plan)

2016 ACE SBA IR-18 Attachment 11 Page 3 of 5

An Emera Company	Outage Charter
nit 6	
eneral:	
inor Outage, 6 weeks (pulverizer refurbishment is driver for 6 week duration)	
apital:	
oal Run – Belts, Reclaim Hoppers	
A and 6B Pulverizer refurbishment	
urbine controls power suppliers	
ottom ash seal replacement ir Heater Refurbishments	
piler Refurbishment (including bifurcates)	
ondenser Waterbox and Piping Reline	
AC / HE Piping Replacements	
perating:	
ERC PMs – relays and UPS	
Irbine LP Row6 LH & RH Blading inspection (contingency plan required)	
Irbine LP Inspection	
ecip repairs	
gh Energy Piping	
r Heater Structure and Baskets inspection A Boiler Feed Pump – remove Fluid Coupling (AMO intends to look further into this)	
ottom Ash Seal	
ack Breaching repairs	
A Duct repair	
an VIVs	
Irbine governor valve overhaul (Inspection planned, no capital funding planned at this time)	
urbine main stop valve overhaul (Inspection planned, no capital funding planned at this time)	1 - Andrew Child
EP/FAC inspections (no funding has been included in the OM&G plan for this while awaiting p	plan development)

MAJOR DELIVERABLES	
1	Known required (long lead) materials procured in advance and ETA tracked to delivery.
2	Have all contract work identified and RFP's / RFQ's drafted for release allowing time for terms and conditions to be finalized and Contracts awarded in advance of outage start.
3	Draft Scope of Outage Capital Projects & Maintenance Inspections / Repairs is developed with time & cost estimates for labor and accurate budgeting.
4	Validate scope of work with Asset Experts, Asset Management Group, OEMs, etc.
5	Deliverables as identified through the Outage Standardization process (minutes, Org chart, reports, Work Packages) and thorough recording of risks and change during outage execution.
6	Use of tools developed through the Outage Standardization Process, such as Milestones, during preparation and planning.

ASSUMPTIONS

Economic outages will be assessed as they occur, and the ability to execute scope during this outage and therefore reduce the original defined Outage scope (and therefore term labour requirements etc.) will be evaluated at each opportunity.

2016 ACE SBA IR-18 Attachment 11 Page 4 of 5

Outage Charter

	MILESTONES	Date	
1	End of Q1, 2014 - Finalized work plan, draft capital list, draft budget	March 31, 2014	
2	End of Q2, 2014 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2014	
3	End of Q3, 2014 – Finalized budget, capital program and maintenance scope.	September 30, 2014	

Note: Scope and budget details subject to change based on findings during execution of 2014 outages.

HIGH LEVEL OM&G BUDGET		Amount
1	Unit 5 – Minor Outage	\$750K
2	Unit 6 – Major Outage	\$900K
	Total Budget	\$1.65M

1	HIGH LEVEL CAPITAL BUDGET (outage scope only)	Amount	Totals
Unit 5	Turbine Valves (main stop valve, control valves)	\$750,000	
	Boiler refurbishment	\$600,000	
1	Air Heater reinstall Basket Grids and Structural repair	\$500,000	
	Air heater upgrades	\$500,000	
	Coal Run – Belts, Reclaim Hoppers	\$500,000	
	Burner refurbishments	\$250,000	
	Burner Managmement System replacement (I&E)	\$200,000	
	5-1 CE Pump refurbishment	\$200,000	
	CW Screen refurbishment	\$175,000	
	Battery bank replacement	\$150,000	
	Baghouse Bag Replacement	\$150,000	
	Tundish drain replacement	\$135,000	\$4,110,000
Unit 6	Boiler refurbishment (including bifurcates)	\$800,000	
	Air Heater Refurbishments	\$750,000	
	Pulverizer refurbishment	\$650,000	
	Condenser Waterbox and Piping Reline	\$425,000	
	Bottom ash seal replacement	\$250,000	
	Turbine controls power suppliers	\$200,000	
	Coal Run – Belts, Reclaim Hoppers	\$150,000	
	FAC HE Piping Replacements	\$50,000	\$3,275,000
-	Total Budget	\$7,385,000	\$7,385,000

2016 ACE SBA IR-18 Attachment 11 Page 5 of 5

Outage Charter

	MAJOR RISKS	Probability (H,M,L)	Impact to Project (H,M,L)
1	All Units: All turbine inspection work may result in additional scope. Contingency plans are to be developed for the areas noted above.	Low	High
2	All Units: Late identification of scope may result in unpreparedness for outage (budget item not identified, contract not in place, materials not delivered)	Low	Med
3	TRE5 and TRE6 HP Feedwater Heaters have been evaluated, and should not require Capital expenditure in 2015. Should conditions change or wear be faster than expected, these may have to be addressed sooner.	Low	High
4	Low Load Valve replacement for TRE5 is planned for 2014. If this does not get executed in 2014, it will have to be completed in 2015 at a capital cost of approximately \$200K.	Low	Med
	Define mitigation and / or contingency strategies where Proba	bility or Impact are	e High:
1.	Work with AMO personnel and technical experts to ensure ap place. For TRE5 main steam valve weld inspection: Contingency mu required. For TRE6 Turbine LP: Rapid turnaround of inspection analysis sourcing plan put in place. Learn from history to help develop and budget for these plans	ist be put in place s will be required,	in case repair is
2.	Using tools such as the Outage Scope Development checklist the risk of unidentified scope	t and Milestones s	hould mitigate

AGREED				
Outage Manager	Dion Antle	Date	July 24, 2014	
Outage Owner	Stewart Whynott	Date	July 24, 2014	
Executive Owner	1. 100	Date	100 22/14	

2016 ACE SBA IR-18 Attachment 12 Page 1 of 6

OUTAGE CHARTER				
Project Name	2015 Outage Charter			
Executive Owner	Dave Pickles			
Outage Owner	Tony Stevens			
Outage Manager	Tim Gillis			

BACKGROUND INFORMATION

The Charter is based on the Standardized Outage Quality Process. It Identifies our major Outage Deliverables for 2015 and provides a high level overview.

In 2015 there are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be in an Outage. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs.

These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, and Regulatory Time Stamped Requirements.

SAFETY PLAN

- Tufts Cove is committed to an accident-free workplace and will be committing to early identification and mitigation of any risks that pose a threat to employee safety.
- A Safety Stand Down will be coordinated early in the outage schedule, engaging all staff & contractors.
- A Safety Officer will be utilized on outages to assisting in promoting safety awareness, job observation, risk assessments, housekeeping, restricted area identification, incident reporting, and first aid attendant.
- 4) Outage Preparation will ensure that equipment and work Areas are properly inspected and safe for use before Outage begins (Cranes, Lifting Gear, Lighting, vehicles, etc.)
- Safety Issues and concerns will be discussed with Package Owners and Leads during regular Outage meetings.
- 6) All aspects of NSPI's Safety Program will be maintained during the Outage.
- All Safety Documentation (Incident Reports, Observation Reports, Risk Assessments, etc.) managed by the Safety Officer will be Recorded & Filed along with the Outage Report for History and Lessons Learned Purposes.
- 8) Plant Clean-ups will be conducted before, during and after Outages as required to ensure that the Plant remains Clean and Safe to work in. The Safety Officer will monitor work sites for congestion and cleanliness and mitigate any issues.
- Site Emergency Response personnel will be updated by the Safety Officer as to what confined space, high angle, and other hazardous work is commencing and advise supervisors to staff ERT members as required.

	OUTAGE OBJECTIVES	
1	No Lost Time or Medical Aid Incidents	
2	Execute the planned work during the outages safely, on time and on budget.	
3	At least 90% completion of identified Plant Outage scope (project work, PMs, defects, etc.)	
4	Address all known plant issues that affect unit reliability and performance.	
5	Document the outage to support both internal, and external auditing processes.	

2016 ACE SBA IR-18 Attachment 12 Page 2 of 6

ROLE	RESPONSIBILITIES		
Executive Owner	Promotes Health & Safety Provides the leadership, priority and commitment to the Outage scope from the senior executive perspective. Serves as liaison to the NSPI Leadership Team, communicating the Outage objectives and assuring proper resourcing.		
Outage Owner	Promotes Health & Safety Actively champions and promotes the Outage work scope. Clarifies Outage objectives and deliverables. Assists with the resolution of issues that cannot be resolved by the Outage manager. Helps remove obstacles to success.		
Outage Manager	 Promotes Health & Safety Has overall accountability for the successful execution of the maintenance Outage in terms of scope, cost, schedule, and quality and customer satisfaction, from initial involvement to completion. Provides ongoing direction, motivation and support to plant staff and other Outage resources. Continually ensures effective communication with key Outage stakeholders. Proactively monitors Outage performance and ensures appropriate action is taken to address risks and issues. Ensures proper documentation is created, maintained and archived. 		

UNIT OUTAGE OVERVIEW

Unit 1

General:

Minor Outage, 4 weeks (driver, turbine valve refurbishment)

Capital:

- Polisher upgrades (\$200K)
- Gas Block Valves (\$125K)
- Analytical panel replacement (TUC1 & 2) (\$125K, split between two units)
- Turbine Valve Refurbishment (\$450K)

Operating:

- Turbine IP/LP and DFLP semi complete Inspection (contingency planning required, pending review of Dispatch, costing included in High Level OM&G Budget below, \$100K included for phased array
- Turbine LP Last Stage Blade inspection (contingency plan required) (Pending Review of Dispatch, costing included in High Level OM&G budget below)
- NERC PMs relays and UPS
- HEP/FAC inspections (~\$100K anticipated)
- Routine Annual Inspections/Assessments, Preventative Maintenance & Repairs
- Replacement of North Boiler Feedpump Discharge Check Valve
- Annual Boiler Inspection
- Boiler Gas Leakage Mitigation (Duel Fuel Capability)
- Routine Inspections/Assessments, Preventative Maintenance and Repairs
- Main Feed water Valve Overhauls
- Overhaul & AVK of Boiler Pressure Safety Valves
- Continue Feedwater FAC & High Energy Piping Program
- Coolers Assessments & Possible Upgrades
- Closed Cooling System Piping & Exchangers Replacements / Upgrades
- Inspection of Bled Steam Non-Return Valves

Notes:

Due to higher than forecasted dispatch, TUC1 turbine inspections and valve refurbishments have been brought into 2015.

2016 ACE SBA IR-18 Attachment 12 Page 3 of 6

Unit 2	
onit 2	
General Minor Ou	tage, 4 weeks
Capital:	
•	Rotary Air Heater refurbishment (\$500K)
	Analytical panel replacement (TUC1 & 2) (\$125K, split between two units) Polisher upgrade (\$125K)
:	DCS upgrade (\$100K)
	North BFP Refurbishment (\$191K)
	DFLP blade 75 replacement (one blade, \$112K+ install, pending review of Next Scheduled LP Outage and endation from Siemens, not currently in the Capital plan, see Major Risks below)
Operatir	
	NERC PMs – relays and UPS HEP/FAC inspections & Re-Inspection of Main Steam "Y" Section HEP/FAC inspections (~\$100K anticipated)
	Turbine LP Spindle HCF Assessments (cost currently uncertain)
•	Lube Oil Tank Cleaning
	Condenser Eddy Current Testing – 20% Survey EVT Only of Boiler Pressure Safety Valves
•	Inspection of Bled Steam Non-Return Valves
Notes:	
	Turbine DFLP & LP Inspections not included in Operating budget (not expected until 2016)
	Turbine DFLP disk inspection
	Turbine DFLP axial entry attachment inspection Turbine LP Last Stage Blade inspection

2000	
Unit 3	
General:	
winor Ou	tage, 4 weeks
Capital:	
1.1.1	DCS Upgrade Chimney Refurbishment
	Turbine Main Steam Chest Overhaul (main stop valve & governor)(contingency plan required):
	 Excavate & Weld Repairs to LH & RH ESV Covers Replacement Bushings, Valve Spindles, Seats, and Hardware will be Required
Operatin	g:
	NERC PMs – relays and UPS
	HEP/FAC inspections HEP/FAC inspections (~\$100K anticipated)
	Turbine LP Last Stage Blade inspection (contingency plan required) Turbine DFLP axial entry attachment inspection (contingency plan required)
1.4	Turbine LP – Weld Repairs to No.5/6 Gland Boxes
1.1	Turbine LP – Hotwell Support Structure Repairs
1.1	Re-inspection of new Stub Keys on Row 21 Blades from Inside hot well Turbine LP Spindle HCF Assessments
	Routine Annual Inspections/Assessments, Preventative Maintenance & Repairs
	Annual Boiler Inspection
1	Economizer Inlet Header Video probe Inspection Full Boiler Steam Drum Internal NDE
	Tube Samples – ECO/PSH/SSH/RH
125	Condenser Eddy Current Testing – 100% Survey
1	AVK Only of Boiler Safety Valves Inspection of Bled Steam Non-Return Valves
1.1	Assessment of Condenser Air Extraction Zone Corrosion Rate

2016 ACE SBA IR-18 Attachment 12 Page 4 of 6

Unit 6

General: 3 Weeks

Capital:

- Steam Cycle Dissolved Oxygen Control \$300K
- Condenser Waterbox Refurbishments \$120K

Operating:

- Routine Annual Inspections/Assessments, Preventative Maintenance & Repairs
- Run GSCW Cooling Water to Vacuum Pump Coolers
- Hotwell & LSB Inspections
- Turbine Control Valves Open & Inspect. (Recommended by Mitsubishi following commissioning and pprox., 1 year of standard operation.
- Visual Inspections of Boilers and Tube Sampling if Required
- AVK only of Boiler Safety Valves

	MAJOR DELIVERABLES		
1	Known required (long lead) materials procured in advance and ETA tracked to delivery.		
2	Have all contract work identified and RFP's / RFQ's drafted for release allowing time for terms and conditions to be finalized and Contracts awarded in advance of outage start.		
3	Draft Scope of Outage Capital Projects & Maintenance Inspections / Repairs is developed with time & cost estimates for labor and accurate budgeting.		
4	Validate scope of work with Asset Experts, Asset Management Group, OEMs, etc.		
5	Deliverables as identified through the Outage Standardization process (minutes, Org chart, reports, Work Packages) and thorough recording of risks and change during outage execution.		
6	Use of tools developed through the Outage Standardization Process, such as Milestones, during preparation and planning.		

ASSUMPTIONS

Economic outages will be assessed as they occur, and the ability to execute scope during this outage and therefore reduce the original defined Outage scope (and therefore term labour requirements etc.) will be evaluated at each opportunity.

	MILESTONES	Date
1	End of Q1, 2014 - Finalized work plan, draft capital list, draft budget	March 31, 2014
2	End of Q2, 2014 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2014
3	End of Q3, 2014 – Finalized budget, capital program and maintenance scope.	September 30, 2014

2016 ACE SBA IR-18 Attachment 12 Page 5 of 6

	HIGH LEVEL OM&G BUDGET	Amount	Totals
Unit 1	Weekly Operating Outage Budget (\$150K/wk)	\$600,000	2.4.4
	HEP/FAC	\$100,000	
	Boiler Gas Leakage	\$100,000	\$800,000
Unit 2	Weekly Operating Outage Budget (\$115/wk)	\$460,000	1
	HEP/FAC	\$100,000	\$560,000
Unit 3	Weekly Operating Outage Budget (\$150/wk)	\$600,000	Terration of the
	HEP/FAC	\$100,000	\$700,000
Unit 6	Weekly Operating Outage Budget (\$60/wk)	\$180,000	
201	IST/Mitsubishi OEM Engineering Support	\$40,000	\$220,000
-	Total Budget	\$2,280,000	\$2,280,000

	HIGH LEVEL CAPITAL BUDGET (outage scope only)	Amount	Totals
Unit 1	Turbine Valve Refurbishment	450,000	
· · · · ·	Gas Block Valves	\$200,000	
	Analytical Panel Replacement (split between TUC1 & 2)	\$125,000	
	Polisher Upgrade	\$125,000	\$900,000
Unit 2	Analytical Panel Replacement (split between TUC1 & 2)	\$125,000	
	DCS Upgrade	\$100,000	
	North BFP Refurbishment	\$191,000	
-	Polisher Upgrade	\$125,000	
_	Rotary Air Heater Refurbishment	\$500,000	\$1,041,000
Unit 3	Turbine Steam Chest Overhaul (valves)	\$450,000	
	Chimney Refurbishment	\$100,000	
	DCS Upgrade	\$100,000	\$650,000
Unit 6	Steam Cycle Dissolved Oxygen Control	\$300,000	and the second
	Condenser Waterbox Refurbishments	\$120,000	\$420,000
	Total Budget	\$3,011,000	\$3,011,000

2016 ACE SBA IR-18 Attachment 12 Page 6 of 6

	MAJOR RISKS	Probability (H,M,L)	Impact to Project (H,M,L)
1	All Units: All turbine inspection work may result in additional scope. Contingency plans are to be developed for the areas noted above.	Low	High
2	All Units: Late identification of scope may result in unpreparedness for outage (budget item not identified, contract not in place, materials not delivered)	Low	Med
3	TUC1 boiler gas leakage mitigation (dual fuel capacity) work may result in greater than budgeted Operating costs, or a Capital project	Med	Med
4	TUC2 Blade #75 replacement may be required. Work is still being evaluated. If required, it is anticipated this work would be considered Capital.	Med	Med
5	TUC3 Row 21 blading replacement decision is awaiting resolution of Siemens RCA Findings. May result in a Capital project or additional Operating costs to support the work.	Low	Med
	Define mitigation and / or contingency strategies where Proba	bility or Impact are	e High:
	Work with AMO personnel and technical experts to ensure applace. Learn from history to help develop and budget for these plans Using tools such as the Outage Scope Development checklist the risk of unidentified scope		

AGREED				
Outage Manager	Tim Gillis	Date	July 16, 2014	
Outage Owner	Tony Stevens	Date	July 16, 2014	
Executive Owner	1176	Date	Ser14/14	

2016 ACE SBA IR-18 Attachment 13 Page 1 of 5

5/29/2015

Lingan Generating Station Unit1 - 2016 QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office **2016 PLANNED OUTAGE CHARTER** Plant / Location: Lingan Generating Station Uhit 1 Executive Owner Jamie MacDonald Outage Ownert **Tony Stevens** Jerry Bedecki Outage Manager Background Information The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage Inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources. Shutdown Targets and Deliverables No Lost Time or Medical Aid Incidents 1 2 No Environmental incidents. 3 Execute the planned work during the Outages safely, on time and on budget. 4 Identify long-lead materials and track to delivery in time for Outage execution. 5 Identify Contract work associated with the Outage, and have RFPs/RFOs prepared to allow Contract finalization in advance of Outage start. 100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed. 6 Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external 7 auditing processes. Special focus to be taken to identify and record risks, change and learnings. 8 Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning. **Outage TMS Request**

2016 ACE SBA IR-18 Attachment 13 Page 2 of 5

QP-\$301 Shutdown Standardization
 Planned Outage Charter
 Asset Management Office

Lingan Generating Station Unit1-2016 6/29/2015

All information Submitted in this process will be used by the NSP solely in support of its obligations under NBRC, FAM and associated policies, standards and procedures. All submitted information will be assigned the appropriate confidentiality level-upon receips

Start Date 17-	Sep-16 Time:	- 0	s a Recall Possible?	5-2771
First Re-Sync 14	Oct-16 Time:	-	Fime to Recall (Days / Hours)	
Commercial Operation 15-	-Oct-16 Time:	-	Estimated Cost to Recall -	

Start Date Roughly Based Week Turbing Minor as 1	per Fleet Maintenance Program
4 Week Condenser Coat	
	oine.Valve and condenser coating
	n Run-Up (Pending L-0 Blading Decision)

Operating Overview and High Level Budget					
Herr Description	Budget,	Conthigency Plan	Long, Lead. T/Jath		
1 3 Week Minor Outage Maintenance Activities (\$175,000 / Week)	\$525,000				
2 Flow Assisted Corrosion and High Energy Piping Surveys (PDM)	\$150,000	X			
3 Last Stage Blading LH & RH Inspections from Hotwell. [MPI Included]	Included				
4 Rotary Air Preheater Inspections and Seal Clearances (Heat Rate)	Included		1		
5 NERC PMs, Relay and UPS (NERC)	Included		1		
6 Standard Instrumentation Calibrations / Correct any Deficiencies (Heat Rate	Included				
SOFA & Secondary Air Dampers - Ensure Full Stroke Capability (Heat Rate)	Included	11			
Total	\$675.000	ie			

Capital Overview and High Level Budget

2016 ACE SBA IR-18 Attachment 13 Page 3 of 5

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Lingan Generating Station Unit1 - 2015 6/26/2015

Them Description	Budget	Condigency	Loog Lead . Matis
Turbine Main & Reheat Stop/Control Valve Refurbishments (3-4 Yrs)	\$195,000	CONTRACTOR AND	
Inspections and Overhaul - Labour , material, consumables	Included		
Replica & Hardness Testing Program	Included		1
Replica & Hardness Testing Program	Included		1.5
Intercept Control Valve External Seal Rings Replacement	\$15,000		Yes
Contingency for Spare CV Valve Seat Replacement (Seat Seal Weld Cracking)		\$45,000	Yes
Contingency for Misc. Weld Repairs if Required		\$30,000	
Z Boller Refurbishment (5yr Plan)	\$500,000		
Bottom Ash Refurbishment (5yr Plan)	\$300,000		
4 Condenser Plasticor Treatment (Chem Reliability)	\$200,000		
5 Cycle Isolations - Valves and Steam Trap Replacements as Required (Heat Rat	Unknown	· · · · · · · · · · · · · · · · · · ·	
6 Boiler Repairs Resulting from Air in leakage surveys / SB Seals (Heat Rate)	Unknown		
O(B)	SI 210,000	S-65-000	

Planning Milestones			
	Wilestone	A Den al State and a state of the	
1	End of Q1, 2015 - Finalized work plan, draft capital list, draft budget	March 31, 2015	
2	Mid.Q2, 2015 - Decision on L-0 Blades and Order Placed with Selected Vendor. (Pending)	May 15, 2015	
2	End of Q2, 2015 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015	
3	End of Q3, 2015 - Finalized budget, capital program and maintenance scope.	September 30, 2015	

1

Risk Identification		
Risks and a second s	Probability	Imbact
Turbine Inspections may result in additional scope. Contingency Plans should be developed for items noted above.	Medium	High

2016 ACE SBA IR-18 Attachment 13 Page 4 of 5

OP-GOOL Shutdown Standardization Planned Outage Charter Asset Management Office

Lingan Generating Station Unit1 - 2016 6/26/2015

2	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Medium
3	It is likely that Turbine Major for 2016 could be pushed into 2017 or 2018 to allign with Generator outage (Planned in 2018). Also could be pushed into 2017 due to the large major on Lingan 4 due in 2016. This will require assessment and consultation with industry experts, plant, and AMO.	High	Low
4	Lingan Unit1 has been flagged for re-assessment of the maintenance program due to lower projected dispatch. This could reduce the scope of the outage or push it out due to lower running hours. Investment in last stage blading is in question due to a lower projected dispatch and could be defferred.	Hìgh	Low
5	Turbine Valves will be open during outage, with large amounts of employees and contractors in the area. Risk of foreign material being dropped of left in machine.	Low	High
6	During the outage major assets will be out of service for an extended period of time. There is risk of degredation should there be inadequate environmental controls.	Low	High
	Define mitigation and / or contingency stratagles where probability of whoat ban	e highe , Six	Contraction of the
1	Develop Stratagy or Contingency Plans for areas identified.		
2	n and a real structure and the method and and a second structure and the second structure and th		
3	Review with Plant, AMO and Industry Experts for best path forward		
4	Review with Plant, AMO and Industry Experts for best path forward. Decision on L-O Bla		
5	Plan and Implement FME process utilizing fleet standards and practices. Borescope pric	r to Re-buil	d.
6	Practice environmental controls referancing fleet layup programs		

Delay of Outage Start

To Tacking Enclosed control of the Return for Service date would be to start as unnighte Return for Service date would have to start to the Outage Start, as unnighte Return for Service date would have to start the Same.

Delay Est Coscol-Delay 12 Hours \$78,800

2016 ACE SBA IR-18 Attachment 13 Page 5 of 5

QP-GOOI Shutdown Standardization Planned Outage Charter Asset Management Office			Lingan Generating	Station Unit1 - 2016 6/26/2015
	24 Hours	\$152,500		
-	48 Hours	\$233,000		
Guraje Manager	A Bedlehi	ement Pare A	110 25/15	
Outsige Owner:	RAD	Seate:	hune 29/15	

Nova Scotia

Units

In Emera Comoa

2

2016 ACE SBA IR-18 Attachment 14 Page 1 of 4

S S State
 ⇒ QP-GOOT Shutdown Standardization
 Planned Outage Charter
 Asset Management Office

Plant / Location:

Executive Owner

Outage Owner:

Outpge Manager

Lingan Generating Station Unit2 - 2015 6/25/2015

2016 PLANNED OUTAGE CHARTER

Lingan Generating Station

Jamie MacDonald Tony Stevens Jerry Bedecki

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

Shutdown Targets and Deliverables

 1
 No Lost Time or Medical Aid Incidents

 2
 No Environmental Incidents.

 3
 Execute the planned work during the Outages safely, on time and on budget.

 4
 Identify long-lead materials and track to delivery in time for Outage execution.

 5
 Identify Contract work associated with the Outage, and have RFPs/REOs prepared to allow Contract finalization in advance of Outage start.

 6
 100% of Identified "High Priority" work completed, 70% of "Medium Priority" work completed.

 7
 Document the Outage and utilize the tools developed through the Outage Standardization Process to support both Internal, and external auditing processes. Special focus to be taken to Identify and record risks, change and learnings.

8 Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

2016 ACE SBA IR-18 Attachment 14 Page 2 of 4

QP-GD01 Shutdown Standardization
 Planned Outage Charter
 Asset Management Office

Lingan Generating Station Unit2 - 2016 5/29/2015

All information submittee in this process will be used by the NSP solely in support of its obligations under NERC, SAM shid associated bouckets standards and procedures. All submittee information will be assigned the appropriate confidential where upport receipe

Starl Date 28-May-16 Time:		Is a Recall Possible?
First Re-Sync 18-Jun-15 Time:	-	Time to Recall (Days / Hours) 9 Days
Commercial Operation 19-Jun-16 Time:	-	Estimated Cost to Recall \$351,500

COMIVIENTS (Driver for timeline, include interaction and impacts on other outages, generation and/or transmission)

Schedule date based on Outage and Layup after U4 Major

3 Week Turbine Valves Outage as per Fleet Maintenance Program (pending actual run time)

Recall may be Possible, But only if Nessesary. Would Require Unplanned Re-Assembly of Turbine Valves and Carry Risk-Estimated Cost to Recall Based on Lingans "Unit Outage Delay" Labour Costs for 72Hrs. (9 Days / 8 Hrs per Day)

Operating Overview and High Level Budget Consuctancy: LongLoad hiem Description Eudget Plan (NEDE 3 Week Minor Outage Maintenance Activities (\$175,000 / Week) 1 \$525,000 2 Flow Assisted Corrosion and High Energy Piping Surveys (Acuren) \$50,000 3 Last Stage Blading LH & RH Inspections from Hotwell. (MPI Included) Included 4 NERC PMs, Relay and UPS (NERC) Included Rotary Air Preheater Inspections and Seal Clearances (Heat Rate) 5 Included 6 Standard Instrumentation Calibrations / Correct any Deficiencies (Heat Rate) Included 7 SOFA & Secondary Air Dampers - Ensure Full Stroke Capability (Heat Rate) Included Lava 5575,000 / SQ

Capital Overview and High Level Budget

kein Deseription

Contingency Long Lead

Plane A T

和自己

2016 ACE SBA IR-18 Attachment 14 Page 3 of 4

- CP-G001 ShutJown Standardization Planned Outage Charter Asset Management Office

1.00

Lingan Generating Station Unit2 - 2016 5/25/2015

1 Turbine Main & Reheat Stop/Control Valve Refurbishments (3-4 Yrs)	\$195,000		
Inspections as Development and the second	Included		
Replica & Handress TestingRess and	Included		
Contingency for Non-Spare Materials (Ex. Seats / MS Bypass)	1	\$40,000	Yes
Contingency for Weld Repairs (If Reg'd)		\$20,000	
2 Boiler Refurbishment	\$250,000		
3 Cycle Isolations - Valves and Steam Trap Replacements as Required (Heat Ra	Unknown		
4 Boiler Repairs Resulting from Air in leakage surveys / SB Seals (Heat Rate)	Unknown		
Total	\$250,200	\$60,000	

Planning Milestones					
	Milestorie				
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015			
2	End of Q2, 2015 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015			
3	End of Q3, 2015 - Finalized budget, capital program and maintenance scope.	September 30, 2015			

Ricks 24	(TR. blackding)	Сапрас
Due to Relatively lower investment in Lingan 2 there will be further non-intrusive inspection to manage mechanical risk. There is a possibility that inspection could reveal significant repairs not accounted for in budgeting.	Low	High
Lingan Unit2 has been flagged for re-assessment of the maintenance program due to greater than previously projected running hours. This could expand the scope of the outage should major asset inspections be warrented.	Medium	High
Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured; Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low

2016 ACE SBA IR-18 Attachment 14 Page 4 of 4

CP-G001 Shuttlown Standardization Planned Dutage Charter Asset Management Office

Lingan Generating Station Unit2 - 2015 6/25/2015

4	Turbine Valves will be open during outage, with large amounts of employees and contractors in the area. Risk of foreign material being dropped of left in machine.	Low	High				
	Define mitigationand / or contingency strategies where probability of impact Consider passible contingency separation should issues to found. Manage through with		Accet				
1	Consider possible contingency scenarios should issues be found. Manage through with support from Asset Management team and industry experts to determine best path forward for any unplanned repairs.						
2	Update operating life expectations and running hours and re-assess scope.						
	Plan and Implement FME process utilizing fleet standards and practices. Borescope pr	ior to Re-build	l.				

Delay of Outage Start

To factilitie dispatch sections by Markebing, provide an estimate for 272 hour, 24 hour an 48 hour delay to the Didage Start, assuming ship fecture to service data would have to Start the service

Beleving the second	dest.co.troi.0eby.
12 Hours	\$68,800
24 Hours	\$132,800
48 Hours	\$218,700

A	reement
Oudgen Haspers & Ledech	i Dare June 25/15
Outageowners A	> Pares One 29/15
Executive/Darger	Pate

2016 ACE SBA IR-18 Attachment 15 Page 1 of 4

Lingan Generating Station Unit3 - 2016

6/25/2015

QP-5001 Sector Standardization Planned Outage Charter Asset Management Office

Plant / Location

Executive Owner

Outage Owner:

Outgee Manas

Vova Scotia

in Emera

Dinta-

3

2016 PLANNED OUTAGE CHARTER

Lingan Generating Station

Jamie MacDonald Tony Stevens Jerry Bedecki

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

	Shutdown Targets and Deliverables
1	No Lost Time or Medical Aid Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFOs prepared to allow Contract finalization in advance of Outage start.
6	100% of identified "High Priority" work completed, 70% of "Mjedium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

2016 ACE SBA IR-18 Attachment 15 Page 2 of 4

- 1 -

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Lingan Generating Station Unit3 - 2016 5/29/2015

All information submitted in this process will be used by the NSP solely or support of its obligations under NERC, PAM and associated policies, standards and procedures. All submitted information will be assigned the appropriate confidentially level upon receipt

Start Date 15-Oct-16 Time:	-	Is a Recall Possible? Yes
First Re Sync. 5-Nov-16 Time:	× .	Time to Recall (Days / Hours) 6 Days
Commercial Operation 6-Nov-16 Time:	- 14	Estimated Cost to Recall \$218,700

COM	MENTS: (Driver f	or timeline, Inc	ude interaction	n and impacts o	on other cuta	ges, generatio	n and/or tran	smission)
Schedule later	in year based o	n 2015 Major	overhaul					
3 Week Minor	Maintenance O	utage	14. 1					

Recall Available. Timing depends on Outage Progress...

Estimated Cost to Recall Based on Lingans "Unit Outage Delay" Labour Costs for 48Hrs. (6 Days / 8 Hrs per Day)

Operating Overview and High Level Budget contingenty. Long Lead Budeet Item Description. Plan -Matel 3 Week Minor Outage Maintenance Activities (\$175,000 / Week) \$525,000 1.0 2 Flow Assisted Corrosion and High Energy Piping Surveys (Acuren) \$150,000 Last Stage Blading LH & RH Inspections from Hotwell. (MPI Included) 3 Included 4 NERC PMs, Relay and UPS (NERC) Included 5 Rotary Air Preheater Inspections and Seal Clearances (Heat Rate) Included Standard Instrumentation Calibrations / Correct any Deficiencies (Heat Rate 6 Included 7 SOFA & Secondary Air Dampers - Ensure Full Stroke Capability (Heat Rate) Included \$675.000 Totel 1. 8 1

Capital Overview and Hig	h Level Budget	
Rein sesenthor	Constant Dudget	genra Pongiteal
1 Boiler Refurbishment	\$500,000	

2016 ACE SBA IR-18 Attachment 15 Page 3 of 4

QP-G001 Shutslown Standardization Planned Outage Charter Asset Management Office

Lingan Generating Station Unit3 - 2016 6/25/2015

2 Cycle Isolations - Valves and Steam Trap Replacements as Required (Heat Ra	Unknown	
Boiler Repairs Resulting from Air in leakage surveys / SB Seals (Heat Rate)	Unknown	12.2.2
Fotof	SANCARE	

	Planning Milestones	
	Wilestone	Date
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015
2	End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015
3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015

	Risk Identification		
1 E.	Rifts and Anna Anna Anna Anna Anna Anna Anna	Reacebility	in impact
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Medium
	Define mith attanade or contagency stratages where probability parages	nednerez	
1			
2			
3			

Delay of Outage Start

To tachtate dispatch decisions by Marketing, provide an estimate to a 12 hour 24 hour and 48 hour delay to the Outage Sterr, assuming the Return to Service decisions and an error stay the same

Delay and	Est Cost of Deby
12 Hours	\$68,800
24 Hours	\$132,800
48 Hours	\$218,700

	Agreement		
Otitage Manageous 444	& Redecki	Cater Gene 23	115

2016 ACE SBA IR-18 Attachment 15 Page 4 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office		Lingan Generating Station Unit3 - 2016 6/25/2015
Outare Owner Executive/Owner	Jang De Dares June 29/15 MUAN Dares Supt 21/15	

Y

Nova Scotia

An Emera Con

4

Unit

2016 ACE SBA IR-18 Attachment 16 Page 1 of 6

Lingan Generating Station Unit4 - 2016

6/30/2015

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

Plant / Location

Executive Own

Outage Ownerd

No

No

Outage Mana

1 2

2016 PLANNED OUTAGE CHARTER

Lingan Generating Station

Jamie MacDonald

Tony Stevens

Jerry Bedecki

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

Shutdown Targets	and Deliverables
Lost Time or Medical Ald Incidents	
Environmental Incidents.	

3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery In time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage start.
6	100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

standards and urocedures

2016 ACE SBA IR-18 Attachment 16 Page 2 of 6

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Lingan Generating Station Unit4 - 2016 5/30/2015

All informations ubmitted in this process will be used by the NSP Solidy in support of the obligations index NERC FRM and usociated policies All submitted information will be assigned the appropriate confidentiality, lavel upon receipt:

Start Date 2-Apr-16 Time:	-	Is a Recall Possible?
First Re-Sync 3-Jun-16 Tune:	1.0	Time to Recall (Days / Hours)
Commercial Operation	-	Estimated Cost to Recall -

COMMENTS. (Driver for timeline, include interaction and impacts on other outages, generation and/or transmission) Based on U3 2015 SD, Start major later due to history of winter weather impact on execution.

9 Week Turbine-Generator Major as per Fleet Maintenance Program (Inicuding: LP LSB Replace / Genr Rotor Rewind)

No Recall Available

Balance Runs / Commissioning / Testing Required on Run-Up

Operating Overview and High Lev	el Budge		
инет Декстарной	Banget	Sommers y	
1 9 Week Major Outage Maintenance Activities (\$175,000 / Week)	\$1,575,000		
2 Flow Assisted Corrosion and High Energy Piping Surveys	\$150,000		10000000000000000000000000000000000000
3 NERC PMs, Relay and UPS	Included		1
4 Standard Instrumentation Calibrations / Correct any Deficiencies (Heat Rate	e] Included		
5 SOFA & Secondary Air Dampers - Ensure Full Stroke Capability (Heat Rate)	Included		
total	51725.000	50	

Capital Overview and High Leve	el Budget		
A TReam Bit Settingtion	Euclose	Contractory Plant	Tanglead.
1 HP-IP Turbine Major Inspection (8yr 60,000hr - Last Inspection 2008)			
Plant Labour & Contracts (Open & Close)	Included		

2016 ACE SBA IR-18 Attachment 16 Page 3 of 6

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

Visual, MT/PT, Phased Array, Shroud Checks, Tenon UT, Bore Exam (10yr) \$180,000 Steam Path Audit & Contingency Seal/Gland Replacements \$60,000 \$120,000 Yes Replace HPIP Rotating Biades Stages 1 & 2 \$1,350,000 Yes HP-IP Turbine Replications / Hardness Program (Cylinders, Piping, Chests) \$50,000 Contingency for Rotating Stages 3,8,9,10. \$750,000 Yes Contingency for 2nd & 8th Stage Diaphragm SPE Repairs (Spare for 8th?) \$150,000 Yes Contingency for HP & IP Inlet Seal Rings \$40,000 Yes Contingency for Unit Allignment if Required \$50,000 Contingency for Bearing Re-Babbiting if Required \$20,000 Contingency for Governor Refurbishment if Required \$45,000 Yes 2 LP Turbine Major Inspection (8yr 60,000hr - Last Inspection 2008) Replacement of L-O Rotating Blading (Heavy Erosion in 2008) \$4,160,000 Yes Plant Labour & Contracts (Open & Close) Included Visual, MT/PT, Phased Array, Shroud Checks, Tenon UT, Bore Exam(10yr) Included Eddy-Current Exam L-1 / L-2 / L-3 Rotating Blade Rows \$35,000 Replace L-0 Attatchment Pin (2008 Reccomendation) Included Contingency for 8th Stage Diaphragm SPE Repairs \$100,000 Yes Contingency for Tenon/Shroud Weld Repairs (Wastage, Cracking, Etc.) \$100,000 Yes Contingency for L-1 Rotating Blade Replacements or L.S. Repair Option \$1,500,000 Yes Contingency for LP Gland Casing Repairs and Gland Packing Replacements \$120,000 Yes Contingency for Replacement Expansion Bellows if Req'd \$35,000 Yes High Temperature Fasteners Replacements (5yr Plan) 3 \$870,000 4 Generator Rotor / Stator Major Inspection (Assessment - Last Insp. 2008) Rotor Rewind (Copper Dusting and Pole X-Over Concerns), Replacement of \$1,915,000 Yes Rotor Retaining Rings with 18.18 Material Plant Labour & Contracts (Open & Close) Included Visual & Electrical Testing, ELCID, PD, PI, Power Factor, Etc. \$40,000 Stator Wedge Tap Testing and Contingency Repairs / Partial Re-Wedge \$20,000 \$30,000 NDE Testing of Rotor Fan Blades Included Flux Probe installation \$50,000 Contingency for Stator Full Re-wedge \$200,000 Contingency for Stator Rewind or Plant Stator Rewind Kit \$4,000,000 Contingency for Replacement H2 Seals or Refurbishment \$15,000

Lingan Generating Station Unit4 - 2016 5/30/2015

2016 ACE SBA IR-18 Attachment 16 Page 4 of 6

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

5 High Voltage Bushing Replacement \$630,000 6 AVR Replacement \$815,000 Z Turbine Main & Reheat Stop/Control Valve Refurbishments (3-4 Yrs) \$195,000 Inspections and Overhaul - Labour, material, consumables Included Replica & Hardness Testing Program Included \$15,000 Intercept Control Valve External Seal Rings Replacement Yes Contingency for Spare CV Valve Seat Replacement (Seat Seal Weld Cracking) \$45,000 Yes Contingency for Misc. Weld Repairs if Required \$30,000 Bently Nevada System 1 Upgrades (2008 Report) 8 \$200,000 9 Boiler Refurbishment (5yr Plan) \$500,000 10 **Division Wall Replacement** \$640,000 11 SH5 refurbishment \$490,000 12 Burner Front component replacement \$480,000 13 Air Heater Baskest and seal replacement \$480,000 14 Bottom Ash Refurbishment (Syr Plan) \$475,000 15 Replace Lingan 4 Sample Panel (Chem Reliability) \$2.80,000 Cycle Isolations - Valves and Steam Trap Replacements as Required (Heat Rat 16 Unknown Boiler Repairs Resulting from Air in leakage surveys / SB Seals (Heat Rate) 17 Unknown Total \$12.580.000

Planning Milestones

1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015
2	End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015
3	Q2, 2015 - Decision on L-0 Blades and Order Placed with Selected Vendor	July 30, 2015
4	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015

Risk Identification		
Ricis	Propagativ	Impact
Turbine & Generator Inspections may result in additional scope. Contingency Plans should be developed for items noted above.	High	Medium

Lingan Generating Station Unit4-2016 6/30/2015

2016 ACE SBA IR-18 Attachment 16 Page 5 of 6

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Lingan Generating Station Unit4 - 2016 6/30/2015

2	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.) Note: Decision is needed for LP Last Stage Blading and forgings procured by Mid Q2 for project to proceed in 2016.	Low	High
3	During the outage major assets will be out of service for an extended period of time. There is risk of degredation should there be inadequate environmental controls. (Example: Turbine / Hotwell, Gen Rotor / Stator Enviro Controls)	Low	High
4	L-O Blading Replacement and Generator Rotor Rewind is pending review and assessment. These items could become capital projects for the unit depending on how further assessments look.	High	Medium
5	During the outage, major assets will be open with large amounts of employees and contractors in the area. Risk of foreign material being dropped or left in the machines.	Low	High
6	Risk that the turbine / generator major on unit4 could get pushed to 2017 based on running hours.	Low	Low
7	There is a possibility that Turbine control valve refurbishments could be pushed into 2016 Major from 2015 due to a large amount of work on Lingan 3 in 2015	Low	Low
	Define milication and / or contingency stratagies where probability on impact dr	€high?:::	
1	Develop Stratagy or Contingency Plans for areas Identified.		
2	Make decision on LP Last Stage Blading project and begin procurement process at earlie	est opportu	nity.
3	Practice environmental controls referencing fleet layup programs		
4	Plant, Management, and AMO to assess requirements and lock down scope on major it	the second se	
5	Plan and Implement FME process utilizing fleet standards and practices. Borescope pric	or to Re-buil	d,
6	Review unit running hours and feasibility to execute in 2017.		

Delay of Outage Start

2016 ACE SBA IR-18 Attachment 16 Page 6 of 6

·QP/G001 Shutdown Standardization Planned Outage Charter Asset Management Office

10

Ungan Generating Station Unit4 - 2015 5/30/2015

Belev Est Cost of Delay
12 Hours \$78;800
24 Hours \$152/500
48 Hours \$233,000

To facilitate dispatch decisions by Merkeurg, provide all estimate for a 12-neur, 24-hour and 48-hour disprite the Outage Shire, assuming the Roturn to Service direvoord have to stay the same

Ourage Manager:	& Bedechi	pare find 30,2	2015
Datage Owner	2000	March Jame 30/	2015
Secutive Owner		Date Sulf 11/15	

2016 ACE SBA IR-18 Attachment 17 Page 1 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Port Hawkesbury Biomass Generating Station Unit1 - 2016 3/27/2015

2016 PLANNED OUTAGE CHARTER Port Hawkesbury Biomass Generating Station PB3 **Dave Pickles** Jeff Campbell **Ray Barret Background Information** The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources. Shutdown Targets and Deliverables No Lost Time or Medical Aid Incidents 1 2 No Environmental Incidents. Execute the planned work during the Outages safely, on time and on budget. 3 Identify long-lead materials and track to delivery in time for Outage execution. 4 5 Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Ontract finalization in advance of Outage start. 100% of Identified "High Priority" work completed, 70% of "Medium Priority" work completed. 6 Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external 7 auditing processes. Special focus to be taken to identify and record risks, change and learnings. Prepare scope and budgets as required to meet Milestones for Gapital, Operating and Outage Planning. 8

Outage TMS Request

All information submitted in this process will be used by the ISP solely in support of its obligations under NERC, FAM and associated policies, standards and provedures. All submitted information will be assigned the appropriate confidentiality level uppreceder.

Start Date	9-Apr-16	Time:	0:01	Is a Recall Possible?	Yes
First Re-Sync	30-Apr-16	Timer	17:00	Time to Recall (Days / Hours)	5 Days
Commercial Operation	1-May-16	Timer	8:00	Estimated Cost to Recall	\$75,500

COMMENTS: (Driver for timeline, Include interaction and impacts on other outages, generation and/or transmission) Start Date reflects best possible time for outage at PHB, due to fuel condition and supply. 3 Week Minor Maintenance Outage as per Fleet Maintenance Program Recall may be Possible: Depends on Outage Progress. Estimated Cost to Recall Based on Point Tupper "Unit Outage Delay" Labour Costs for 40Hrs. (5 Days / 8 Hrs per Day)

2016 ACE SBA IR-18 Attachment 17 Page 2 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

Port Hawkesbury Blomass Generating Station Unit1 - 2016 3/27/2015

Operating Overview and High Level Budget				
Beau Descaption	Bunderi	Condingency Plan	Hong Load Mai/s	
1 3 Week Minor Outage Maintenance Activities (\$300,000 / Week)	\$900,000			
2 Boller Inspections and Repairs	Included			
3 Fuel System Maintenance	Included			
4 Conveyor Maintenance	Included			
5 CW Inspections	Included			
6 Precipitator Inspections	Included			
7 General Preventative Maintenance & Repairs	Included			
Foisil	\$900,900	- <u>-</u>		

Capital Overview and High Level Budget					
Rom versulption	Sudger	Sontingency Plan	Long Lend Made		
1 Boller Refurbishment	\$250,000		1973 and 1		
2 Trancel Screw Annual Refurbishment	\$140,000				
3 Conveyors & Handling Systems	\$200,000				
4 HP Caustic Dosing Upgrades (Chem Reliability)	\$150,000				
Total	j72(0),0(0)	50			

	Planning Milestones	
	Milescone	Debe
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015
2	End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015
3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015

	Risk Identification		
	in the second	The main and the second	long a
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
2			
3			
	Define miligration and / or contingency strate gest where probability or impact	are high	
1	Consider possible contingency scenarios should something be found. Manage throug Management team and industry experts to determine best path forward for any unpl		
2		1	
3			

2016 ACE SBA IR-18 Attachment 17 Page 3 of 3

Port Hawkesbury Biomass Generating Station Unit1 - 2016 3/27/2015

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

Delay of Outage Start

To facilitate dispatch decisions by Marketing, provide an estimate for a 17-hour, 24-hour and 48-hour delay to the Outage Start, assuming the Return to Service date would have to stay the same.

Deley.	Est. Cost of Delay
12 Hours	\$24,200
24 Hours	\$45,000
48 Hours	\$88,000

2016 ACE SBA IR-18 Attachment 18 Page 1 of 3

Point Aconi Generating Station Unit1 - 2016 4/27/2015

1

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

2016 PLANNED OUTAGE CHARTER

Unit:

Plant / Location:

Point Aconi Generating Station

Executive Owner:	Dave Pickles	
Outage Owner:	Ron MacNeil	() and (a second se
Outage Manager:	Bill Harris	

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance &Operating History, insurers recommendations, root cause failure analyses, and other sources.

	Shutdown Targets and Deliverables
1	No Lost Time or Medical Aid Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Ontract finalization in advance of Outage star
6	100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

All information submitted in this process will be used by the NSP solely in support of its obligations under NERC, FAM and associated policies, standards and procedures. All submitted information will be assigned the appropriate confidentiality level upon receipt.

Start Date	10-Sep-16	Time:	Is a Recall Possible?	Yes
First Re-Sync	8-Oct-16	Time:	Time to Recall (Days / Hours)	6 Days
Commercial Operation	9-Oct-16	Time:	 Estimated Cost to Recall	\$563,800

COMMENTS: (Driver for timeline, include interaction and impacts on other outages, generation and/or transmission)

Start Date Roughly Based on 2016 TMS.

4 Week Minor Maintenance Outage as per Fleet Maintenance Program

Recall may be Possible. Depends on Outage Progress.

Estimated Cost to Recall Based on Point Aconi "Unit Outage Delay" Labour Costs for 48Hrs. (6 Days / 8 Hrs per Day)

2016 ACE SBA IR-18 Attachment 18 Page 2 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Point Aconi Generating Station Unit1 - 2016 4/27/2015

	Item Description	Budget	Contingency Plan	Long Lea Matis
1	4 Week Minor Outage Maintenance Activities (\$350,000 / Week)	\$1,400,000		
2	Boiler Deslag & Cleaning	Included		
3	Flow Assisted Corrosion and High Energy Piping Surveys (Acuren)	\$1.00,000		
4	Ash Silo PMs & Filter Bag Change Outs	Included		
5	Bottom Ash Screw Cooler PMs	Included		
6	Safety Valve Inspections and Refurbishments	Included		
7	Turbine Last Stage Blading Inspections from Hotwell	Included		
8	NERC PMs, Relay and UPS (NERC)	Included		
9	Standard Instrumentation Calibrations / Correct any Deficiencies (Heat Rate	Included		
10	HP-IP Turbine Leakage High (8%). Check N2 Packing. Feasible? (Heat Rate)	Unknown		
otal		- \$1,500,000	\$0	

	Capital Overview and High Level Budget						
	Item Description	Budget	Contingency Plan	long Lead Matis			
1	Boiler Refurbishment	\$250,000					
2	Boiler Refractory Replacement	\$750,000					
3	Boiler Arrowhead Replacements	\$220,000		4			
4	Screw Cooler Trough Replacement (If carried over from 2015)	\$70,000	· · · · · · · · · · · · · · · · · · ·	11			
5	Stack Lighting Replacements	\$165,000		(1			
6	Expansion Joint Replacements	\$75,000					
7	Baghouse Bag Replacements (5yr Plan)	\$500,000		1.			
8	Main Steam Pipe hanger Refurbishments (5yr Plan)	\$100,000	1	N			
9	4160V Motor / Breakers Program (5yr Plan)	\$200,000		1			
10	CW Valve Refurbishments (5yr Plan)	\$200,000					
11	Tubular APH Section Replacements (Heat Rate - Approx 600 Tubes Plugged)	\$250,000		· · · · · · · · · · · · · · · · · · ·			
12	Cycle Isolations - Valves and Steam Trap Replacements as Required (Heat Ra	\$95,000					
13	Boiler Repairs Resulting from Air in leakage surveys / SB Seals (Heat Rate)	Unknown					
14	Vortex Finder replacement northside	\$275,000		2			
15	SH3 Boiler tube replacement Phase 2	\$484,000					
Total		\$3,634,000	\$0				

Planning Milestones					
	Milestone	Date			
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015			
2	End of Q2, 2015 Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015			
3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015			

Risk Identification

2016 ACE SBA IR-18 Attachment 18 Page 3 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Point Aconi Generating Station Unit1 - 2016 4/27/2015

	Risks	Probability	Impact
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
2	and a second and a s	- 1	1
3			1
	Define mitigation and / or contingency stratagles where probability or impact	are high:	
1	Consider possible contingency scenarios should something be found. Manage throug	h with suppor	t from Ass
т	Management team and industry experts to determine best path forward for any unp	lanned repairs	i.
2			
3			

Delay of Outage Start

To facilitate dispatch decisions by Marketing, provide an estimate for a 12-hour, 24-hour and 48-hour delay to the Outage Starr, assuming the Return to Service date would have to stay-the same.

Delay	Est, Cost of Delay
12 Hours	\$143,300
24 Hours	\$283,500
48 Hours	\$563,800

ar de la companya de	Agreement	t	
Outage Manager:	Bellans	Date: April 27/1	5
Outage Owner:	ARNA	Date: Day 27/1	5-
Executive Owner:	" toto	Date: May 6/15	-

2016 ACE SBA IR-18 Attachment 19 Page 1 of 3

Point Tupper Generating Station Unit2 - 2016 3/27/2015

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

2016 PLANNED OUTAGE CHARTER

2

Isiai / Location

Point Tupper Generating Station

Executive Owner:	Dave Pickles	THE DECEMBER OF STREET, CAR
Same ge Owneder	Jeff Campbell	
Curbage Managers	Ray Barret	

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance &Operating History, insurers recommendations, root cause failure analyses, and other sources.

Shutdown	Targets and	Deliverables
----------	--------------------	--------------

1	No Lost Time or Medical Aid Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Ontract finalization in advance of Outage start
6	100% of Identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

All information submitted in this process will be used by the ISP solely in support of its obligations under NERC, FAM and associated policies, standards and procedures. Al submitted information will be assigned the appropriate confidentiality level upon receipt.

Start Date	30-Jul-16	Tlime:	-	Is a Recall Possible?	No
First Re-Sync	6-Aug-16	Timer	4	Time to Recall (Days / Hours)	-
Commercial Operation	7-Aug-16	Time:	÷	Estimated Cost to Recall	-

COMMENTS: (Oriver for timeline, include interaction and impacts on other outages, generation and/or transmission) Start Date Roughly Based on 2015 TMS. 2016 TMS D.P. 1 Week Minor Maintenance Outage as per Fleet Maintenance Program Recall not available, outage length does not allow.

2016 ACE SBA IR-18 Attachment 19 Page 2 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Point Tupper Generating Station Unit2 - 2016 3/27/2015

	Kasan Rassor (perior)	Rudget	Contractory Result	Luig Les Marks
1	1 Week Minor Outage Maintenance Activities (\$200,000 / Week)	\$200,000		
2	General Maintenance Defects & Preventative Maintenance	Included		
3	Boiler Inspection	Included		
4	Precipitator Inspection	Included	· · · · · · · · · · · · · · · · · · ·	
5	CW System & Culvert Cleaning (Heat Rate)	Included		
6	LCIM / TMP / PM / Regulatory Compliance	Included		
7	Flow Assisted Corrosion and High Energy Piping Surveys (Acuren)	Included		
8	Turbine Last Stage Blading Inspections from Hotwell (Contingency Included)	Included	60,000	
9	NERC PMs, Relay and UPS (NERC)	Included		
10	Rotary Air Preheater Inspections and Seal Clearances (Heat Rate)	Included		
11	Standard Instrumentation Calibrations / Correct any Deficiencies (Heat Rate	Included		
12	SOFA & Secondary Air Dampers - Ensure Full Stroke Capability (Heat Rate)	Included		
fors il		3200,000	566,000	

	Capital Overview and High Level	Budget		
	Wan Doverialitan	the hyper	Condingency Plan	Long tend. Weldu
1	Replace E belt and refurbish frames and rollers (5yr Plan Item)	\$1.00,000		
2	Refurbish East & West Polisher Pnuematic Valves (Chem Rellability)	\$50,000	NSD	
3	LP Dosing Automation (Chem Reliability)	\$120,000		
4	Cycle Isolations - Valves and Steam Trap Replacements as Required (Heat Ra	Unknown		
5	Boiler Repairs Resulting from Air in leakage surveys / SB Seals (Heat Rate)	Unknown	1	
Tutal		\$270,000		

	Planning Milestones	Planning Milestones	
	1011-022010,	Luive,	
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015	
2	End of Q2, 2015 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015	
3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015	

	Risk Identification	Risk Identification	
100	Refer	Reobability	Inspecies
1	2016 Outage timeline and scope could increase due to findings in 2015.	Low	Low
2	Contingency plans for Generator and LP/IP Last Stage Blading for Repairs if Required.	Low	High

2016 ACE SBA IR-18 Attachment 19 Page 3 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Point Tupper Generating Station Unit2 - 2016 3/27/2015

3	POT2 Boiler has been identified for possibly needing a chemical cleaning (Latest Report shows loading in the Clean region above 30 mg/cm2). Further investigation and decision on timing needs to be done. Depending on evaluation this could effect outage length and costs.	Medium	High
	Define configution and / or contingent your stugies where prohebility of impact	are high:	
1	Consider possible contingency scenarios should something be found. Manage throug Management team and industry experts to determine best path forward for any unp		
3	Develop contingency plans for items identified.		
4	Review Requirements with Asset Specialists and develop plan if required.		

Delay of Outage Start

To fedilitate dispatch decisions by Marketing, provide an estimato for a 12-hour, 24-hour and 48-hour delay to the Ourage Start, assuming the Return to Sarvice date would inave to stay the same.

Delay	Fish Cost of Delay
12 Hours	\$24,200
24 Hours	\$45,000
48 Hours	\$88,000

2016 ACE SBA IR-18 Attachment 20 Page 1 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

Trenton Generating Station Unit5 - 2016 3/30/2015

Nova Scoti **2016 PLANNED OUTAGE CHARTER** Plant / Location: **Trenton Generating Station** Unit: 5 Executive Owner: **Dave Pickles** Outage Owner: **Stewart Whynott Outage Manager: Dion Antle Background Information** The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources. Shutdown Targets and Deliverables No Lost Time or Medical Aid Incidents 1 2 No Environmental Incidents. 3 Execute the planned work during the Outages safely, on time and on budget. Identify long-lead materials and track to delivery in time for Outage execution. 4 5 Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage start. 6 100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed. Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external 7 auditing processes. Special focus to be taken to identify and record risks, change and learnings.

8 Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

All Information submitted in this process will be used by the NSP solely in support of its obligations under NERC, FAM and associated policies, standards and procedures. All submitted information will be assigned the appropriate confidentiality level upon receipt.

Start Date	3-Sep-16	Time:	-	Is a Recall Possible?	Yes
First Re-Sync	8-Oct-16	Time:	-1	Time to Recall (Days / Hours)	6 Days
Commercial Operation	9-Oct-16	Time:		Estimated Cost to Recall	\$201,900

Start Date Roughly Based on 2015 TMS. 2016 Th	ns or
5 Week Minor Maintenance Outage as per Fleet Main	tenance Program
Recall may be Possible. Depends on Outage Progress	
Estimated Cost to Recall Based on Trenton "Unit Outa	ge Delay" Labour Costs for 48Hrs. (6 Days / 8 Hrs per Day)

2016 ACE SBA IR-18 Attachment 20 Page 2 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Trenton Generating Station Unit5 - 2016 3/30/2015

	Item Description	Budget	Contingency Plan	Long Lead Matis
1	5 Week Minor Outage Maintenance Activities (\$250,000 / Week)	\$1,250,000		NAME OF 1957
2	Bottom Ash Conveyor System	Included		
3	Precipitator Inspection and Repairs	Included		
4	Turbine Last Stage Blading Inspections from Hotwell	Included		
5	Rotary Air Preheater Inspections and Seal Clearances (Heat Rate)	Included		
6	Standard Instrumentation Calibrations / Correct any Deficiencies (Heat Rate	Included		
7	SOFA & Secondary Air Dampers - Ensure Full Stroke Capability (Heat Rate)	Included		
8	Analytical Panel / GSCW Piping	Included		
Total		\$1,250,000	\$0	

	Capital Overview and High Level	Budget		na Martin de Natur - Santa - Ma
	Item Description	Budget	Contingency Plan	Long Lead Matis
1	Boiler Refurbishment	\$600,000		
2	Flow Assisted Corrosion and High Energy Piping Surveys (Acuren)	\$300,000	·	
3	Install Flowmeters for 5-1 / 5-2 Polishers (Chem Reliability)	\$15,000		
4	Cycle Isolations - Valves and Steam Trap Replacements as Required (Heat Ra	Unknown		
5	Boiler Repairs Resulting from Air in leakage surveys / SB Seals (Heat Rate)	Unknown	1	
6	Install Cascade Drain Thermocouples on FW Heaters 1,2,4,5 and 6 (Heat Rat	\$50,000	1	
7	Possible Vacuum Pump Replacement or Refurbishment (Heat Rate - Pendin	\$335,000		Yes
8	Air Heater Cold End Baskets and Support Grids - 4wks	\$600,000		Yes
9	Possible Feedwater Heater Replacement - No.5-4 / No.5-5/ No.5-6	\$900,000		Yes
10	Coal System Upgrades	\$500,000		
11	Burner Refurbishments	\$250,000		
12	BAS Replacement	\$250,000		
13	5-2/5-4 Pulverizor Refurbishments	\$350,000		
14	Water Treatment Plant Resin Replacements	\$50,000		
15	Drains Cooler Re-tubing	\$100,000		_
16	Lube Oil Cooler - Replacement Bundle	\$250,000		
17	51 Fan Refurbishment	\$500,000	1	
18	Main Boiler Stop Valve Refurbishment	\$250,000		
19	GSCW / Common Water System Upgrades	\$100,000		
Total		\$5,400,000	\$0	

Planning Milestones

Date

2016 ACE SBA IR-18 Attachment 20 Page 3 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Trenton Generating Station Unit5 - 2016 3/30/2015

1	End of Q1, 2015 - Finalized work plan, draft capital list, draft budget	March 31, 2015
2	End of Q2, 2015 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015
3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015

+1//'	Risk Identification	An and the second	- 0
	Risks	Probability	Impae
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
2			
3			
	encents. Define mitigation and / or contingency stratagies where probability or impact	are high:	
1	Consider possible contingency scenarios should something be found. Manage throug Management team and industry experts to determine best path forward for any unp		
2			
3			

Delay of Outage Start

To facilitate dispatch decisions by Marketing, provide an estimate for a 12-hour, 24-hour and 48-hour delay to the Outage Start, assuming the Return to Service date would have to stay the same.

Delay	Est. Cost of Delay
12 Hours	\$64,700
24 Hours	\$124,400
48 Hours	\$201,900

	Agreemen	t.	
Outage Manager:	Dim Antho	Date: MAR 30 20	15
Outage Owner:	Stwat what	Date: Mar 30/15	4 *
Executive Owner:	J. Ab	Date: Apr 1/17	-
	l	provide the second	

2016 ACE SBA IR-18 Attachment 21 Page 1 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Trenton Generating Station Unit6 - 2016 3/30/2015

Nova Scotia 2016 PLANNED OUTAGE CHARTER Plant / Location: **Trenton Generating Station** Unit: 6 Executive Owner: **Dave Pickles Outage Owner: Stewart Whynott** Outage Manager: **Dion Antle Background Information** The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage Inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources. Shutdown Targets and Deliverables No Lost Time or Medical Aid Incidents 1 2 No Environmental Incidents. Execute the planned work during the Outages safely, on time and on budget. 3 4 Identify long-lead materials and track to delivery in time for Outage execution. Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage

5 interfact work associated with the Outage, and have it Ps/rt Gs prepared to anow contract manipation in advance of Outage start.
 6 100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed.
 7 Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.

8 Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

All information submitted in this process will be used by the NSP solely in support of its obligations under NERC, FAM and associated policies, standards and procedures. All submitted information will be assigned the appropriate confidentiality level upon receipt.

Start Date	9-Apr-16	Time:	-	Is a Recall Possible?	Yes
First Re-Sync	7-May-16	Time:	-	Time to Recall (Days / Hours)	9 Days
Commercial Operation	8-May-16	Time:	-	Estimated Cost to Recall	\$373,600

COMMENTS: (Driver for timeline, include interaction and impacts on other outages, generation and/or transmission) Spring outage is ideal for Unit6 due to maintenance that will be required on bottom ash early in the year. 4 Week Minor Maintenance Outage as per Fleet Maintenance Program. 4 weeks Required for Condenser Ball Cleaner. Recall may be Possible. But only if nessessary. Would Require Unplanned Re-Assesmbly of Turbine Valves and Carry Risk Estimated Cost to Recall Based on Trenton "Unit Outage Delay" Labour Costs for 72Hrs. (9 Days / 8 Hrs per Day)

2016 ACE SBA IR-18 Attachment 21 Page 2 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Trenton Generating Station Unit6 - 2016 3/30/2015

Operating Overview and High Level Budget						
	Item Description	Budget	Contingency Plan	Long Lead Matis		
1	4 Week Minor Outage Maintenance Activities (\$300,000 / Week)	\$1,200,000				
2	Flow Assisted Corrosion and High Energy Piping Surveys (Acuren)	\$100,000				
3	Turbine Last Stage Blading Inspections from Hotwell	Included				
4	NERC PMs, Relay and UPS (NERC)	Included				
5	Standard Instrumentation Calibrations / Correct any Deficiencies (Heat Rate	Included				
Total		\$1,300,000	\$0			

	Item Description	Budget	Contingency Plan	Long Lead Matis
1	Turbine Main Valves (Reheat & STG Due in 2017) - 3wk	\$650,000		Yes
2	Boiler Refurbishment	\$600,000		
3	Bifurcates	\$300,000		
4	Condenser Auto Ball Tube Cleaning System (Heat Rate - Review Req) - 4wk	\$700,000		Yes
5	Cycle Isolations - Valves and Steam Trap Replacements as Req'd (Heat Rate	Unknown		
6	Boiler Repairs Resulting from Air in leakage surveys / SB Seals (Heat Rate)	Unknown		
7	Bottom Ash Upgrades (Incl. Chain Replacement)	\$500,000		
8	Turbine Controls Power Supplies (Deferred from 2015)	\$150,000		
9	Exciter and AVR Replacement (Likely 2017)	\$750,000		Yes
10	PE for HVB Replacements (required for 2017)			
11	PA Ductwork	\$300,000		
12	BAS Replacements	\$250,000		
13	CW Pumps Isolation Valve Replacements	\$300,000		Yes
14	ID Fan Damper Drive Upgrades	\$250,000		
15	6-4 Feedwater Heater Refurbishment	\$150,000		
16	Reheat Attemperator Nozzle Replacement	\$150,000		
17	W.W. Coolers Replacement	\$300,000		
18	Carbon Filters Replacements	\$400,000		
Total		\$5,750,000	\$0	

	Planning Milestones	
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	Date March 31, 2015
2	End of Q2, 2015 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015
3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015

2016 ACE SBA IR-18 Attachment 21 Page 3 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Trenton Generating Station Unit6 - 2016 3/30/2015

	Risk Identification		
	$\mathbf{Ris}_{\mathbf{G}}$	Probability	Impau
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
2	Risk that unit5 could be placed back-to-back with unit6 in the TMS. It is preferable to separate the two outages as having them back-to-back affects planning and execution effectiveness.	Med	Med
3	ad years and a second		
	Define mitigation and / on contingency stratagies where probability or impact	are high:	
1	Consider possible contingency scenarios should something be found. Manage throu Management team and industry experts to determine best path forward for any un		
2	Communicate need with TMS planning team and identify in charter.		
3	and the second		

Delay of Outage Start

To facilitate dispatch decisions by Marketing, provide an estimate for a 12-hour, 24-hour and 48-hour delay to the Outage Start, assuming the Return to Service date would have to stay the same.

Delay	Est, Cost of Delay
12 Hours	\$81,200
24 Hours	\$157,300
48 Hours	\$216,400

	Agreement		and the second second
Gulage:Manager:	Din Amble	Date:	MAR. 30 2015
Outage Owner:	Stavent what	Date:	MAR 30/15
Executive Owner:	1.700	Pater -	Aprilis

2016 ACE SBA IR-18 Attachment 22 Page 1 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

Outage Manager:

Tufts Cove Generating Station Unit1 - 2016 4/1/2015

2016 PLANNED OUTAGE CHARTER

1

Plant / Location:	Tufts Cove Generating Station	Unit:
Executive Owner:	Dave Pickles	
Outage Owner:	Tony Stevens	

Tim Gillis

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

	Shutdown Targets and Deliverables
1	No Lost Time or Medical Aid Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage star
6	100% of Identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

All information submitted in this process will be used by the NSP solely in support of its obligations under NERC, FAM and associated policies, standards and procedures. All submitted information will be assigned the appropriate confidentiality level upon receipt.

Start Date	12-Mar-16	Time:	-	Is a Recall Possible?	No
First Re-Sync	30-Apr-16	Time:		Time to Recall (Days / Hours)	-
Commercial Operation	1-May-15	Time:		Estimated Cost to Recall	-

COMMENTS: (Driver for timeline, Include interaction and Impacts on other outages, generation and/or transmission) Start date ideal in spring if weather permits, May have ability to move to fall if run hours on IP-LP Permit. 7 Week Turbine Major Inspection (HP-IP-LP) as per Fleet Maintenance Program No Recall Available. Turbine Outage. Scope of Unit1 Outage subject to change in timeline & cost due to changing operational forecasts and utilization.

2016 ACE SBA IR-18 Attachment 22 Page 2 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit1 - 2016 4/1/2015

	Item Description	Budget	Contingency Plan	Long Leac Matis
1	7 Week Major Outage Maintenance Activities (\$110,000 / Week)	\$770,000		
2	Flow Assisted Corrosion and High Energy Piping Surveys	\$120,000		
3	Boiler Gas Leakage Mitigation (Re-Inspection and repairs as required)		30,000	
4	Condenser Eddy Current Testing (100%) (May Defer due to Low Dispatch)	\$30,000		
5	Annual Boiler Inspection	Included	· · · · · · · · · · · · · · · · · · ·	
	Superheater Header Inspection (TMP-007 15-20 Year - New in 1999)	\$20,000	10,000	
	Reheater Outlet Header Inspection (TMP-007 15-20 Year - New in 1999)	\$20,000	10,000	
	Full MT / UT of Steam Drum.	Included		
6	Main Feedwater Valve Overhauls	Included		Yes
7	Turbine Last Stage Blading Inspections from Hotwell	Included		
8	NERC PMs, Relay and UPS	Included	ue	
9	Lube / Seal Oil Cooler Refurbishments - Pull Tube Bundle	Included	50,000	
10	Pressure Safety Valves Testing, and Re-Cert (All Systems / AVK Only on Boile	\$25,000		
11	Standard Instrumentation Calibrations / Correct any Deficiencies (Heat Rate)	Included		
Total		\$960,000	\$50,000	

	Item Description	Budget	Contingency Plan	Long Lead Matis
1	HP Turbine Inspection & Refurbishment (Due 2017 - Allign with IP/LP 2016)	\$2,200,000		
	Insulation and Scaffolidng	\$90,000		
-	Remove & Grit Blast Spindle	\$70,000		
	Full Visual & MPI of Rot/Stat Blade Paths, Shrouds, Shaft Radii, Root faces.	\$60,000		
	Rotor Boresonics Exam	\$45,000		
	Phased Array, NDE and Inspection of Blade Attatchements	\$35,000		
	HP Spindle Total Runout check	Included		
	Spindle & Casing Replication & Hardness Testing	Included		
	Full Bearing Run Allignment	Included		
	Cylinder Inspection, Replications, Radii Cracking, Erosion, Distortion, Etc	Included		
	Inspection and Possible Replacement of HP & IP Inlet Seal Rings	Included	\$50,000	
	Contingency for HP & IP Inlet Seal Ring Replacements (Deferred from 2008)		\$120,000	Yes
	Contingency for HP Spindle Blading and Cylinder Joint Weld Repairs		\$30,000	
	Contingency for No.1-2 Bearing Refurbishments		\$30,000	
	Contingency for Row 4R Repairs		\$140,000	Yes
2	IP Turbine Inspection & Refurbishment (Deferred from 2015)	Included		
	Insulation and Scaffolidng	\$90,000		
	Remove & Grit Blast Spindle	\$70,000		
	Grit Blast & MT IP Diaphrams	Included		
	Full Visual & MPI of Rot/Stat Blade Paths, Shrouds, Shaft Radii, Root faces.	\$60,000		
	Rotor Boresonics Exam & Scoop Sample	\$65,000		
	Phased Array	\$35,000		

2016 ACE SBA IR-18 Attachment 22 Page 3 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit1 - 2016 4/1/2015

	Contingency for Stationary Blading & Diaphragms (1C Row Nozzles)		\$140,000	Yes
	Contingency for All IP Rows (Confirm if 2R-9R are original to 1970 Rotor)		\$160,000	Yes
3	DFLP Turbine Inspection & Refurbishment (Deferred from 2015)	Included		
	Insulation and Scaffolidng	\$40,000		
	Remove & Grit Blast Spindle	\$70,000		
	Grit Blast & MT IP Diaphrams	Included	\$15,000	
	Full Visual & MPI of Rot/Stat Blade Paths, Shaft Radii, Root faces.	\$60,000		
	Full NDE Inspection of L-1,L-2,L-3 Trailing Edges and Blade Hardware	Included		
	Photograph "As Found / As Left" Condition of LP Blading Erosion	Included		
	Rotor Boresonics Exam & Scoop Sample	\$65,000		
	Phased Array, NDE and Inspection of Blade Attatchements	\$35,000		
	Contingency for Misc. Erosion Shield Replacement / Repair if Required		\$35,000	Yes
	Contingency for Lacing Wire Replacement / Repairs as Req'd		\$20,000	Yes
4	Turbine Valves - CIESV Seat, Main Governor Valve Spindles, Fasteners	\$150,000		
5	Turbine Glands, Drains, and Loop Assessments (Pending Review)		\$350,000	
6	South Boiler Feed Pump Refurbishment	\$250,000		
7	Contingency for Air Heater Structural Repairs. Repair Gas Outlet Roof.		\$250,000	
8	CW Keyway Repairs - (Assessment in 2015 and Possible Repairs in 2016)		\$75,000	
9	CW Piping Repairs - (Asssessment in 2015 and Possible Repairs in 2016)	1	\$150,000	
10	TSE / Data Manager Upgrades	\$150,000		
11	Cyclone Block Valve Replacements	\$100,000		Yes
12	Cycle Isolations - Valves and Steam Trap Replacements as Required (Heat Ra	Routine		
13	Repair No.2 Turbine Gland Leak Off Piping (If not Found in 2015) (Heat Rate)	Routine		
Total		\$3,740,000	\$1,565,000	

	Planning Milestones					
	Milestone	Date				
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015				
2	End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015				
3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015				

	Risks	Probability	Impact
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
2	Last HP Turbine Inspection was in 2008 (6yr - 40,000hr). The IP/LP Turbine has been deferred since 2014 and the HP Turbine inspection is scheduled for 2016. Generator planned interval is scheduled for 2017-2018. Due to the unstable forecast of operation and utilization of this unit, changes to this charter and the major scope are subject to change as risk as operating environments change.	High	Medium

2016 ACE SBA IR-18 Attachment 22 Page 4 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit1 - 2016 4/1/2015

3	Due to low projected dispatch on Unit1, operating and capital expendatures may be minimized and require review by plant and AMO. Items are listed above as contingency but have low probability to be implemented in 2016.	High	Low
4	During the outage major assets will be out of service for an extended period of time (Pending Outage Decision). There is risk of degredation should there be inadequate environmental controls.	Low	High
5	During the outage, major assets will be open (Pending Outage Decision) with large amounts of employees and contractors in the area. Risk of foreign material being	Low	High
	dropped or left in the machines.		
	dropped or left in the machines. Define mitigation and / or contingency stratagies where probability or impact ar	e high:	
1		with support	
1 2	Define mitigation and / or contingency stratagies where probability or impact ar Consider possible contingency scenarios should something be found. Manage through v	with support nned repairs. ontingency p	lans for
	Define mitigation and / or contingency stratagies where probability or impact an Consider possible contingency scenarios should something be found. Manage through we Management team and industry experts to determine best path forward for any unplar Review running hour projections, history and risks with deferring inspection. Develop con executing inspection should running hour projections suddenly change. Review options	with support nned repairs. ontingency p	lans for
2	Define mitigation and / or contingency stratagies where probability or impact an Consider possible contingency scenarios should something be found. Manage through v Management team and industry experts to determine best path forward for any unplar Review running hour projections, history and risks with deferring inspection. Develop co executing inspection should running hour projections suddenly change. Review options Management, Plant Staff, and Asset Management Office.	with support nned repairs. ontingency p	lans for

Delay of Outage Start

To facilitate dispatch decisions by Marketing, provide an estimate for a 12-hour, 24-hour and 48-hour delay to the Outage Start, assuming the Return to Service date would have to stay the same.

Delay	Est. Cost of Delay
12 Hours	\$30,000
24 Hours	\$55,000
48 Hours	\$92,500

Date:	april 2,2015
Date:	March 3//15
Date:	Apr 17/15
	Date:

2016 ACE SBA IR-18 Attachment 23 Page 1 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit2 - 2016 4/1/2015

2016 PLANNED OUTAGE CHARTER

Plant / Location:	t / Location: Tufts Cove Generating Station		2
Executive Owner:	Dave Pickles		
Outage Owner:	Tony Stevens		
Outage Manager:	Tim Gillis		

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

	Shutdown Targets and Deliverables
1	No Lost Time or Medical Aid Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage sta
6	100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

All information submitted in this process will be used by the NSP solely in support of its obligations under NERC, PAM and associated policies, standards and procedures. All submitted information will be assigned the appropriate confidentiality level upon receipt.

Start Date	22-Oct-16	Time:		Is a Recall Possible?	No
First Re-Sync	19-Nov-16	Time:	-	Time to Recall (Days / Hours)	-
Commercial Operation	20-Nov-16	Time:	4	Estimated Cost to Recall	

COMMENTS: (Driver for timeline, Include Interaction and impacts on other outages, generation and/or transmission) Start date ideal in fall due to long lead valve materials. Ideal for contingency should utilization and scope increase or decrease.

4 Week Turbine Minor Maintenance Outage as per Fleet Maintenance Program No Recall Available. Turbine Outage.

2016 ACE SBA IR-18 Attachment 23 Page 2 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit2 - 2016 4/1/2015

	Item Description	Budget	Contingency Plan	Long Lead Matis
1	4 Week Minor Outage Maintenance Activities (\$150,000 / Week)	\$600,000		
3	Flow Assisted Corrosion and High Energy Piping Surveys (MS "Y" Inspect)	\$80,000		
4	NERC PMs, Relay and UPS (NERC)	Included		
5	40% Condenser Eddy Current Testing	\$25,000		
6	Boller Inspection			
	Annual Inspection and Support Bracket Repairs as Req'd.	\$50,000	30,000	
	Superheater Header Inspection (TMP-007 250,000 Hr)	\$20,000	10,000	
	Reheat Outlet Header Inspection (TMP-007 250,000 Hr)	\$20,000	10,000	
	Ecconomizer Inlet Header Videoprobe & NDE Nozzles (Intertek - New 2008)	\$20,000	10,000	
	Full MT / UT of Steam Drum. Overdue.	Included		
	Secondary Superheater Tubing Oxide Scale Survey (Intertek)	Reviewing	20,000	
	Reheater Tubing Oxide Scale Survey (Intertek)	Reviewing	20,000	
12	Pressure Safety Valves Testing, Replacement and Re-Cert (All Systems)	\$20,000		
13	Rotary Air Preheater Inspections and Seal Clearances (Heat Rate)	Included		
14	Standard Instrumentation Calibrations / Correct any Deficiencies (Heat Rate	Included		
15	Investigate Possible Division, Plate Leak on FW Heater No.6 (Heat Rate)	Included	100,000	
Total		\$835,000	\$200,000	

Capital Overview and High Level Budget

•	Item Description	Budget	Contingency Plan	Long Lead Matis
1	Turbine DFLP Semi-Complete (13,600Hr Row6 & 4 Disc Bores - FSN-13-3484)			
	Remove / Re-Install Crossover & LP Cover	\$350,000		
	Visual and MPI of Spindle Blades, Fasteners, Pockets, Root Fixing Grooves	\$25,000		11
	Visual and UT Inspection of Erosion Shields	Included		
	Blade 75 Option A - PAUT Inspection (OPG Has Probes to Fit / Half Joint)	\$55,000		1.1.1.1.1.1.1
	Blade 75 Option B - Replacement of Life Expired Blade		\$180,000	Yes
	Row6 Disc (FSN-13-3484) 13.6K Hr EOF Inspection (Steeples have C-Groove)	Included		
	Install LP Center Shaft HCF Monitoring System (Pending Review)	\$32,000		
	Inspect Row 6 RH Diaphragm for Impact / Erosion Damage	Included	1	
	Disc Bore Inspection	\$60,000		
	Inspect No.4/5 Glands (Let in 2013) Contingency for Replacements	Included	\$40,000	
4	Inspect IP Last Stage Blading from Hotwell & Contingency Braze Repairs	Included	\$50,000	-
2	Turbine Main & Reheat Control Valve Inspections			
	Perform Main & Reheat Control Valve Inspections (3-4yr Inspection)	\$450,000		
	MPI, Replication, Hardness on Weld Repairs in Valve Bodies and Covers	\$25,000		
	Confirm Valve Internal Cracking for growth since 2013 Inspection	Included		
	Refurbish or Order New Main ESV Spindle for Inspection	\$35,000		Yes
	Require 2 LH Governor Valve Spindles and Spare Bushings for Inspection	\$85,000		Yes
	Replace LH & RH Intercept Control Valve Spindles	\$75,000		Yes
	Replace Bushings on Slave ESV Relay Piston	\$12,000		Yes

2016 ACE SBA IR-18 Attachment 23 Page 3 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit2 - 2016 4/1/2015

7	Cycle Isolations - Valves and Steam Trap Replacements as Required (Heat Ra	Routine	,,	
6	CW Piping Repairs - (Asssessment in 2015 and Possible Repairs in 2016)		\$150,000	
5	Condenser Waterbox Refurbishments (Possible Plasticore Treatement)	\$275,000		
4	North Boiler Feed Pump Refurbishment	\$250,000		
3	Rotary Air Heater Refurbishments (Deferred from 2015)	\$450,000		Yes
_	Replacement fasterners as per station bolting program		\$25,000	
	Inspect & Replace Aux Governor Fulcrum Bracket Pins		\$5,000	
	Stock 2 Sets of Valve Spindle Castle Nuts	\$3,500		Yes
	Bottle studs & Taps for Governor valve Cover Bolt hole Modification 2013	\$3,500	· · · · · · · · · · · · · · · · · · ·	Yes
	Replace Main Steam Chest Valve Seat Screws	\$3,500		Yes

	Planning Milestones	
	Milestone	Date
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015
2	End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015
3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015
4	Mid Q2, 2016 - Decision and Plan Devloped for L-0 Blades and GenRotor Work in 2017	May 15, 2016

	Risk Identification		
	Risks	Probability	Impac
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
2	Decision to be made. DFLP is due in 2016, Generator in 2017 (Rotor Rewind Potential, only rings done in 2009), and turbine major in 2018 (>3000 hrs/yr) or 2020 (<3000 hrs/yr). There is a risk that based on running hours the generator outage could be pulled ahead (Rotor Rewind Materials to be ordered Mid Q2 if that is case). Or that the L-0 Blading replacement could get pushed out to 2018-2020 turbine major. L-0 Blades may need to be removed for disc groove inspections regaurdless of blading change outs. (Pending Review).	Medium	High
3	During the outage major assets will be out of service for an extended period of time (Pending Outage Decision). There is risk of degredation should there be inadequate environmental controls.	Low	High
4	During the outage, major assets will be open (Pending Outage Decision) with large amounts of employees and contractors in the area. Risk of foreign material being dropped or left in the machines.	Low	High
	Define mitigation and / or contingency stratagies where probability or impact	are high:	
1	Consider possible contingency scenarios should something be found. Manage throug Management team and industry experts to determine best path forward for any unpl		
2	Discuss Options with Plant, Asset Management Office and Senior Management. Decid	le on path forw	vard and

2016 ACE SBA IR-18 Attachment 23 Page 4 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit2 - 2016 4/1/2015

3	Practice environmental controls referancing fleet layup programs
4	Plan and Implement FME process utilizing fleet standards and practices. Borescope prior to Re-build.

Delay of Outage Start

To facilitate dispatch decisions by Marketing, provide an estimate for a 12-hour, 24-hour and 48-hour delay to the Outage Start, assuming the Return to Service date would have to stay the same.

Delay	Est. Cost of Delay
12 Hours	\$30,000
24 Hours	\$55,000
48 Hours	\$92,500

	Agreement		
Outage Manager:	Jim Gillio	Date:	april 2/15
Outage Owner:	Dony Star	Date:	April 1/15
Executive Owner:	N. Atob	Date:	Arc 17/15

2016 ACE SBA IR-18 Attachment 24 Page 1 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit3 - 2016 4/1/2015

2016 PLANNED OUTAGE CHARTER

Plant / Location:	ant / Location: Tufts Cove Generating Station		3	
Executive Owner:	Dave Pickles			
Outage Owner:	Tony Stevens			
Outage Manager:	Tim Gillis			

Background Information

The Charter Is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage Inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

	Shutdown Targets and Deliverables
1	No Lost Time or Medical Aid Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage star
6	100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

All information submitted in this process will be used by the NSP solely in support of its obligations under NERC, FAM and associated policies, standards and procedures. All submitted information will be assigned the appropriate confidentiality level upon receipt.

Start Date	30-Apr-16	Time:	-	Is a Recall Possible?	Yes
First Re-Sync	28-May-16	Time:		Time to Recall (Days / Hours)	5 Days
Commercial Operation	29-May-16	Time:	- 24-	Estimated Cost to Recall	\$38,700

COMMENTS: (Driver for timeline, Include interaction and Impacts on other outages, generation and/or transmission) Start date ideal in spring for LP Turbine Inspection. If not done in 2015, then inspection will need to be done in spring 4 Week Minor Turbine Outage as per Fleet Maintenance Program. Recall may be Possible. Depends on Outage Progress and Final Scope. Estimated Cost to Recall Based on Tufts Cove "Unit Outage Delay" Labour Costs for 40Hrs. (5 Days / 8 Hrs per Day)

2016 ACE SBA IR-18 Attachment 24 Page 2 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit3 - 2016 4/1/2015

-	Item Description	Budget	Contingency Plan	Long Lead Matis
1	4 Week Minor Outage Maintenance Activities (\$150,000 / Week)	\$600,000		
2	Flow Assisted Corrosion and High Energy Piping Surveys	\$100,000		
3	Boiler Inspection		1	
	Annual Inspection and Support Bracket Repairs as Req'd.	\$50,000	30,000	
	Economizer Inlet Header Videoprobe & NDE Nozzles (Intertek - If not in '15)	\$15,000	10,000	
	Superheater Header Inspection (TMP-007 250,000 Hr)	\$20,000	10,000	
	Reheat Outlet Header Inspection (TMP-007 250,000 Hr)	\$20,000	10,000	
	Economizer Tubing Sample & Analysis (Intertek)	\$5,000		
	Primary Superheater Tubing Oxide Scale Survey (Intertek)	Reviewing	20,000	
	Reheater Tubing Oxide Scale Survey (Intertek)	Reviewing	35,000	
	Full MT / UT of Steam Drum. Overdue.	Included		
4	100% Condenser Eddy Current Testing	\$40,000		
5	NERC PMs, Relay and UPS	Included		
6	Pressure Safety Valves Testing, Replacement and Re-Cert (All Systems)	\$20,000		
7	Rotary Air Preheater Inspections and Seal Clearances (Heat Rate)	Included		
8	Standard Instrumentation Calibrations / Correct any Deficiencies (Heat Rate)	Included		
9	Replace Turbine Gland Steam Pressure Gauges 3,4,5,6 (Heat Rate)	Included		
Total		\$850,000	\$115,000	1

Capital Overview and High Level Budget

	Item Description	Budget	Contingency Plan	Long Lead Matls
1	Turbine DFLP Semi-Complete (15,000Hr E.O.F. LP Half Joint Inspection)		1	
	Remove / Re-Install Crossover & LP Cover	\$350,000		
	Visual and MPI of Spindle Blades, Fasteners, Pockets, Root Fixing Grooves	\$25,000		
	MPI LH & RH Last Stage Blading / Disc End of Face (Solid Shaft with Discs)	Included		
	Visual and UT Inspection of Erosion Shields	Included		
	Possible Repairs to No.5 & 6 Gland Boxes (Fits in Poor Condition in 2012)		\$40,000	
-	LP/Generator End Hotwell Support Repairs (IP End Repaired Only in 2014)	Included		
3	LP Rotor Disc Stress Corrosion Life Assessment PB1-08-9002-ST-EN-0	\$35,000		1
4	LP Center Shaft HCF Assessment	\$35,000		
5	Rotary Air Heater Refurbishments (Assess Requirement in 2015)	\$450,000		Yes
6	Lube Oil Purifier Upgrade	\$450,000		Yes
7	North Drum Pressure Safety Valve Replacement (Requires 2015 Assessment)	\$100,000		Yes
8	Natural Gas Ignitor Upgrades (5yr Plan)	\$200,000		Yes
9	Hydrogen Panel Upgrades	\$200,000		Yes
10	CW Piping Refurbishments (Assessment in 2015 Required)	\$200,000		
11	Condenser Waterbox Refurbishments (Possible Plasticor Treatment)	\$275,000		

2016 ACE SBA IR-18 Attachment 24 Page 3 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit3 - 2016 4/1/2015

12	Cycle Isolations - Valves and Steam Trap Replacements as Required (Heat Ra	Routine		
13	Vacuum Pump Refurbishment / Replacement Project	\$450,000	and the second	and the second
Total		\$2,770,000	\$40,000	

Planning Milestones				
	Milestone	Date		
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015		
2	End of Q1, 2015 – Completion of Siemens RCFA on IP Row21 Blading	March 31, 2015		
3	End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015		
4	End of Q3, 2015 - Finalized budget, capital program and maintenance scope.	September 30, 2015		
5	Mid Q2, 2016 - Project Activated for IP Row21 Blading and Begin Procurement Process	May 15, 2016		

	Risk Identification		
1	Risks	Probability	Impac
1	Late identification or approval of scope may result in unpreparedness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
2	IP Turbine Row21 Blading was replaced in 2014 with used blading following a blade tip failure. Depending on RCFA and Forging Availability, IP Row21 Blading could be replaced as early as 2016 although is now targeted for 2017. This could increase capital spending and outage length.	Med	High
3	Turbine LP Inspection could take place in either Fall of 2015 or Spring of 2016. Run hours are being closely monitored. This could reduce scope of outage if done in 2015.	High	Low
4	During the outage major assets will be out of service for an extended period of time (Pending Outage Decision). There is risk of degradation should there be inadequate environmental controls.	Low	High
5	During the outage, major assets will be open (Pending Outage Decision) with large amounts of employees and contractors in the area. Risk of foreign material being dropped or left in the machines.	Low	High
	Define mitigation and / or contingency strategies where probability or impact :		
1	Consider possible contingency scenarios should something be found. Manage through		
2	Prepare contingency plan and have blade fixings and materials available should this o	pportunity arise	2,
3	Plant to be prepared for LP Inspection to take place in fall of 2015 or spring of 2016.		
4	Practice environmental controls referencing fleet layup programs		
5	Plan and Implement FME process utilizing fleet standards and practices. Borescope pr	ior to Re-build.	

Delay of Outage Start

To facilitate dispatch decisions by Marketing, provide an estimate for a 12-hour, 24-hour and 48-hour delay to the Outage Start, assuming the Return to Service date would have to stay the same.

2016 ACE SBA IR-18 Attachment 24 Page 4 of 4

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit3 - 2016 4/1/2015

Delay	Est. Cost of Delay
12 Hours	\$17,500
24 Hours	\$31,900
48 Hours	\$46,400

Outage Manager:	Tim Gilfia	Date:	april 2/15
Outage Owner:	Down Ster	Date:	April 1/15
Executive Owner:	Att	Date:	Apr. 17/15

2016 ACE SBA IR-18 Attachment 25 Page 1 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit6 - 2016 4/1/2015

2016 PLANNED OUTAGE CHARTER

Plant / Location:	Tufts Cove Generating Station	Unit:	6
Executive Owner:	Dave Pickles		
Outage Owner:	Tony Stevens		
Outage Manager:	Tim Gillis		

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage Inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

Shutdown Targets and Deliverables			
1	No Lost Time or Medical Aid Incidents		
2	No Environmental Incidents.		
3	Execute the planned work during the Outages safely, on time and on budget.		
4	Identify long-lead materials and track to delivery in time for Outage execution.		
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage star		
6	100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed.		
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.		
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.		

Outage TMS Request

All information submitted in this process will be used by the NSP solely in support of its obligations under NERC, FAM and associated policies, standards and procedures. All submitted information will be assigned the appropriate confidentiality level upon receipt.

Start Date	28-May-16	Time:	÷	Is a Recall Possible?	Yes
First Re-Sync	25-Jun-16	Time:	÷	Time to Recall (Days / Hours)	5 Days
Commercial Operation	26-Jun-16	Time:	-	Estimated Cost to Recall	\$38,700

COMMENTS: (Driver for timeline, Include interaction and Impacts on other outages, generation and/or transmission) Start Date Tied to TUC4 / TUC5 Outages for 2016. Highly preferable not to overlap with another TUC 1/2/3 Outage. 4 Week Minor Maintenance Outage as per Fleet Maintenance Program. Recall may be Possible. Depends on Outage Progress and Final Scope. Estimated Cost to Recall Based on Tufts Cove "Unit Outage Delay" Labour Costs for 40Hrs. (5 Days / 8 Hrs per Day)

2016 ACE SBA IR-18 Attachment 25 Page 2 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit6 - 2016 4/1/2015

Operating Overview and High Level Budget						
-1-	Item Description	Budget	Contingency Plan	Long Lead Matis		
1	4 Week Minor Outage Maintenance Activities (\$120,000 / Week)	\$480,000				
2	NERC PMs, Relay and UPS	Included				
3	Pressure Safety Valves Testing & Re-Certification (All Systems)	\$50,000				
4	IST Boiler Inspection & Sampling	\$50,000				
Total		\$580,000	\$0			

Capital Overview and High Level Budget					
	Item Description	Budget	Contingency Plan	Long Lead Matis	
1	Initial HP-LP Turbine Blading Inspection (4 Year Half Joint Inspection)				
	Remove HP / IP Covers and Halfjoint Inspection	\$300,000		-	
	Mitsubishi TFA Support	\$80,000			
	Check Interior for Erosion, Corrosion, and Impact Damage	Included			
	Visual, MPI Bladepath, Roots, Blade Fixings, Etc.	\$20,000			
	Check Nozzles, Diaphraagms, Labyrinth Packing.	Included			
	Check Governing Mechanism sliding parts for friction or looseness	Included			
	Confirm Rotor Clearances as per Supplied Mitsubishi Clearance Map	Included			
	Check Casing Drains and strainers for any debris	Included			
	Clearances - Nozzles, Shrouded Blades, Rotor & Laby Glands / Oil Seals	Included			
	Check Journal and Thrust Bearings for Wear, Rubs, and Debris	Included			
	Check Strainers, Filters, Coolers, Etc. on Auxillaries	Included			
	Inspect Last Stage LP Blading and Erosion Shields for Wear	Included			
	Contingency for Blading / Gland / Bearing / Hardware Repairs if Required		80,000	Yes	
	Grease Spherical Bearing and Valve Linkages	Included			
2	Initial Turbine Valves Inspection (4 Year Main/Induction Stops & Governors)				
	Inspect Governors and Stop Valves Bushings, Spindles, and Seats	\$150,000			
	Check Hydraulic Amplifier and Linkages	Included			
	Contingency for Valve Component / Hardware Replacements if Required		\$50,000	Yes	
3	Condenser Waterbox Refurbishments (If not Completed in 2015)	\$350,000			
4	Vacuum Pump Cooler Replacements (If City Water not utilized in 2015)	\$50,000			
Total		\$950,000	\$130,000		

Planning Milestones				
	Milestone	Date		
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015		
2	End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015		
3	End of Q3, 2015 - Finalized budget, capital program and maintenance scope.	September 30, 2015		

2016 ACE SBA IR-18 Attachment 25 Page 3 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Tufts Cove Generating Station Unit6 - 2016 4/1/2015

	Risk Identification			
	Risks	Probability	Impac	
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low	
2	Initial Unit6 Turbine Inspection still under review. Although ideal to take place during TUC4/5 Majors, it may be likely that the project be deferred due to cost and running hours.	High	Low	
3				
	Define mitigation and / or contingency stratagies where probability or impact	are high:		
1	Consider possible contingency scenarios should something be found. Manage through with support from Asse Management team and industry experts to determine best path forward for any unplanned repairs.			
2	Clearly communicate risk of project not going ahead, plan to be ready to execute initi presents itself.	ial inspection if	opportun	
3				

Delay of Outage Start

To facilitate dispatch decisions by Marketing, provide an estimate for a 12-hour, 24-hour and 48-hour delay to the Outage Start, assuming the Return to Service date would have to stay the same.

Delay	Est. Cost of Delay
12 Hours	\$17,500
24 Hours	\$31,900
48 Hours	\$46,400

	Agreement		
Outage Manager:	Tim Gillis	Date:	april 2/15
Outage Owner:	Dony SCo	Date:	April 1/15
Executive Owner:	Auto	Date:	Apr 17/15

2016 ACE SBA IR-18 Attachment 26 Page 1 of 12

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Combustion Turbines - 2016 06/05/2015

1

2016 PLANNED OUTAGE CHARTER

Plants, determination

Burnside Combustion Turbines

- Unit

Kelantive Qwitten	Dave Pickles
Dunage Owner	Tony Stevens
Durage Minnager.	Robert Cooper

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

	Shutdown Targets and Deliverables
1	No Lost Time or Medical Aid Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage start.
6	100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed.
	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both Internal, and external
	auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning,

Outage TMS Request

All information submitted in this protests will be used by the USP ADD yin support of He obligations under NERC, FAM and associated bulgets standa All submitted in this requires standard being as the angle at the angle at the support of the submitted bulgets

Start Date	25-Jul-16	Time	-	Isia Recall Rossible?	Yes
First Re-Sync	08-Aug-16	Time	-	Time to Recall (Days / Hours)	4 Days
Commercial Operation	08-Aug-16	Time:	-	Estimated Cost to Recall	\$27,248

COMMENTS: IOnvertor timeline, include interaction and impacts on other outages, reneration and/or transmission 2 Week Minor Maintenance Outage, Outage Starts on Mondays is preferable for CTs.

Re-Call May be Possible, Based on Outage Progress at the time.

Estimate Cost to Recall roughly based on "Cost of Delay Unit Starts for Tufts Cove"

Outage Timeline could grow if capital work identified as contingency below is not deferred and executed in 2016.

Engine Refurbishment could increase outage timeline to 4 Months if executed in 2016.

2016 ACE SBA IR-18 Attachment 26 Page 2 of 12

QP-G003 Shutdown Standardization Planned Outage Charter Asset Management Office

.

•

Combustion Turbines - 2016 06/05/2015

Operating Overview and High Level Budget						
	ite in Description	Budieat	- KOARINGERSY Plan	uong licent. Matis		
1	2 Week Minor Outage Maintenance Activities (\$ / Week)	\$215,000				
2	Balance of Plant Preventative Maintenance Activities	Included				
3	Balance of Plant Corrective Maintenance Activities	Included				
4	Full Hot Section Inspection	\$38,500				
5	Field Inspection of Welded Free Turbine Vanes (Completed in 2015)	Included	70,000			
a locale		6203308				

Capital Overview and High Level Budget					
	Item Description	Budgot	Contingency Alan		
1 -	BGT1 Engine Refurbishment (Deferred from 2015. Depends on whether BG4 will be done in 2015. If not, spare engine will be utilized for BG1. Because it is currently unkown if this will take place in 2016, it is recorded as "Contingency".)	Ĺ.	\$1,168,167		
2.	Generator Rotor Out Inspection (Included in Retain Rings Replacement - CAP. Inspection and Retaining Ring Replacement is unlikely to happen in 2016 so is recorded as "Contingency".)		\$150,000	-	
3	BGT1 Generator Retaining Ring Replacement (Deferred from 2015, linked to "Generator Rotor Out Inspection". May Defer to 2017)	X	\$375,868		
4	BGT1 - Flux Probe & Partial Discharge (Deferred from 2015, linked to "Generator Rotor Out Inspection" and "Retaining Ring Replacement".)	, <u> </u>	\$65,649		
5	BGT1 - PLC & Field Device Control Systems Upgrades (Deferred from 2015, Going forward if capital spending is reduced, this project may be applied to another unit, Will be recorded under "Contingency".)		\$253,767		
6	BGT1 - Vibration Monitoring System (TGA Assessments, Linked to "PLC and Control Systems Project" Recorded as Contingency.)		\$251,988		
7	BGT1 - Lube Oll Fliter Upgrades (Currently Reviewing Project)	\$30,000			
Table		200 (00b)	3025205-4390		

1 End of Q1, 2015 – Finalized work plan, draft capital list, draft budget March 31, 2015 2 End of Q2, 2015 – Finalized capital plan, more accurate work scope (labour plan) and budget June 30, 2015		Planning Milestones	
		Villa Scone	Date
2 End of Q2, 2015 Finalized capital plan, more accurate work scope (labour plan) and budget June 30, 2015	1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015
	2	End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015
3 End of Q3, 2015 – Finalized budget, capital program and maintenance scope. September 30, 201	3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015

	Risk Identification		
	K hið	Stobability.	impace
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low

	2016 ACE SBA	IR-18 Attac	hment 26 Page 3 of
QP-G001 Shutd Planned Outage Asset Managen		Combas	tion Turbines - 2016 06/05/2015
2	Due to many 2016 projects being dependant on 2015 outages and capital spending, many projects for BG1 are currently on hold. Risk that late approval or deferral of investment to another unit coould affect prepardness and execution in 2016.	Low	High
	Define mitigetieli and //or contingency #trategies witere productify or impact s	re high	
1	Consider possible contingency scenarios should something be found. Manage through Management team and industry experts to determine best path forward for any unpla	• •	1 1
2	Going forward prepare to execute the identified projects until advised otherwise. Mail that possibility of a longer outage could occur if identified work is executed. If all work	-	1 1

see unit offline for up to 12-16 Weeks.

Delay of Outage Start

To faulthy glopatch develops by Markeling provide an estimation a 32 hour, 24 hours and 86 nour allow to the Ourage Storr, assuming the field in to service data would have to stay. Upsama

Delay Est Cost of Delay.			
12 Hours	\$6,812		
24 Hours	\$10,218		
48 Hours	\$11,921		

	Agreement	
Cultage Manager	lohloopen	Daw May 5,2015
Coulare Doviar	A.D.	Data Man 6/2015
Executive Covinar	7. A.C.	bares June 115

2016 ACE SBA IR-18 Attachment 26 Page 4 of 12

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

Combustion Turbines - 2016 06/05/2015

2

2016 PLANNED OUTAGE CHARTER

/ totation

Executive choices

Outinee Outinee

anitar and a second

Burnside Combustion Turbines

Dave Pickles Tony Stevens Robert Cooper

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

1	No Lost Time or Medical Aid Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage start.
6	100% of Identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both Internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

All information submittee in this process will be used by the NSP sately in support of its obligations under NERC, FAM and associated policies, standards and procedure All submitted information will be assigned the appropriate confidential ty lave, upon receipt

Start Date	04-Jul-16	Tone	_	Is a Recall Rossible?	Yes
First Re-Sync	18-Jul-16	Timer		Time to Recall (Days / Hours)	4 Days
Commercial Operations	18-Jul-16	Time		Estimated Cost to Recall	\$27,248

- COMMENTS: (Driver for timeling, include interaction and impacts on other outages, generation and/or transmission) 2 Week Minor Maintenance Outage, Outage Starts on Mondays is preferable for CTs. Outage Could be Extended Should a Generator Refurbishment be Required.

2016 ACE SBA IR-18 Attachment 26 Page 5 of 12

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

ç

Combustion Turbines - 2016 06/05/2015

	Operating Overview and High Lev	el Budge	it and the second	
	Hom Description	Redest	Griftingekey Plan	s tano bordi. Wana
1	2 Week Minor Outage Maintenance Activities (\$ / Week)	\$215,000		
2.	Balance of Plant Preventative Maintenance Activities	Included		
3	Balance of Plant Corrective Maintenance Activities	Included		
4	Full Hot Section Inspection	\$38,500		
5	Field Inspection of Welded Free Turbine Vanes (Completed 2015)	Included	70,000	
e Toal		Castality .		Constant States

	Capital Overview and High Leve	el Budget		
	liennbestription:	5 	Sector (1997)	ied only remain
1	BGT2 - Clutch Switch Improvements (Possible Deferral to 2017)		\$30,000	
2	BGT2 - Lube Oll Filter Upgrades (TGA Assessments)	\$30,000		
Tetal				

	Planning Milestones				
	dified of a	Dure			
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015			
2	End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015			
3	End of Q3, 2015 ~ Finalized budget, capital program and maintenance scope.	September 30, 2015			

	Risk Identification	an The P.Y. Willing Vi	
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
	Define induced on p./. on confingency strategies where probability or impact	are to give	

1Consider possible contingency scenarios should something be found. Manage through with support from Asset
Management team and industry experts to determine best path forward for any unplanned repairs.

Delay of Outage Start

o terlinato rispaicit devisions by Markeling provide an artimate for a 42 hours 24 hours 24 hours and 48 hours delay to the Outero State, assiming the Reform to Service date v Have to exactly an article and a superfiction of the Same

Dellay	Bank Gort of Delay-Str
12 Hours .	\$6,812
24 Hours	\$10,218
48 Hours	\$11,921

											- C. E								
											er								

2016 ACE SBA IR-18 Attachment 26 Page 6 of 12

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

e Maneutri

Combustion Turbines - 2016 06/05/2015

2016 ACE SBA IR-18 Attachment 26 Page 7 of 12

QP-G0D1 Shutdown Standardization Planned Outage Charter Asset Management Office Combustion Turbines - 2016 06/05/2015

3

2016 PLANNED OUTAGE CHARTER

Plant / Location

「日本の一個のな」

Burnside Combustion Turbines

secutive Owners	Dave Pickles
Utage Owner	Tony Stevens
ulese (vianesor	Robert Cooper

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

		<u> </u>	
Shutdow			
STATE 19 AL AND A STATE OF A STAT	M 3 3 MAATO 31	A DADARA	
lan an 💏 🚛 tha 🖓 hint a shek	é na sa mang katéné katéné ng k	si ya ingenerati shika a wa ina si ta ƙ	こう ■行う ないうき えんみもう
이번 지수는 이번 지수는 지수는 것을 수가 지수가 가장하는 것이 같아?	selare e contractere de la contracte	이 방법은 것 같았던 이 가 방법을 하고 가지 수도로 많이 많을까?	

1	No Lost Time or Medical Ald Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify iong-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage start
6	100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both Internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
	autitude processes, special focus to be cavely to identify and record risks, change and rearrings.

Outage TMS Request

Start Date	15-Aug-16	Time:	 Is a Recall Possible?	Yes
First Re-Sync	05-Sep-16		Time to Recall (Days / Hours)	5 Days
Commercial Gauration	05-Sep-16	Time:	 Estimated Cost to Recall	\$34,060

COMMENTS: (priver for timeline, include interaction and impacts on other outages, generation and/octransmission) 3 Week Minor Maintenance Outage, Outage Starts on Mondays is preferable for CTs, Re-Call May be Possible, Based on Outage and Capital Progress at the time. 5 Day Recall Should Capital be executed.

Estimate Cost to Recall roughly based on "Cost of Delay Unit Starts for Tufts Cove"

2016 ACE SBA IR-18 Attachment 26 Page 8 of 12

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Combustion Turbines - 2016 06/05/2015

Operating Overview and High Level Budget							
	thim Weschetion	Bidget	Storting and Plan				
1	3 Week Minor Outage Maintenance Activities (\$ / Week)	\$215,000					
2	Balance of Plant Preventative Maintenance Activities	Included	***************************************	[
3	Balance of Plant Corrective Maintenance Activities	Included					
4	Full Hot Section Inspection (TGA Assessment 2016)	\$38,500	······································				
5	Field Inspection of Welded Free Turbine Vanes (Completed 2015)	Included	70,000				
fold		552150000	670,000				

	Capital Overview and High Leve	l Budget	
	Hen Description	કાલ્યું છે.	Continuency keing Lu- Plan Warts
1	BGT3 - Gas Generator Shop Inspection (TGA Assessments Target 2016, However likely not going to take place until 2017-2018 due to BG4)		1,200,000
2	BGT3 - PLC & Field Device Control Systems Upgrades (TGA Target 2016)	\$253,767	
3	BGT3 - Flux Probe & Partial Discharge (TGA Target 2016, May get Done in 2015, However is linked to Generator Projects)		\$65,649
4	BGT3 - Vibration Monitoring System (TGA Assessments 2016)	\$251,988	
5	BGT3 - Clutch Switch Improvements (2015 - Cancelled?)	\$30,000	
6	BGT3 - Lube Oll Filter Upgrades (TGA Assessments 2016)	\$30,000	
Total		5669.755	NU2051149

	Planning Milestones	
	Nillestone	Date
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015
2	End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015
3	End of Q3, 2015 - Finalized budget, capital program and maintenance scope.	September 30, 2015

	Risk Identification	K VELOVENE VELOVE	IN A THE CONTRACTOR
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
2	Define milligation and / or contingently strategress where probability or impass	ana highs	
1	Consider possible contingency scenarios should something be found. Manage throug Management team and industry experts to determine best path forward for any unp		
2			
3			

Delay of Outage Start

2016 ACE SBA IR-18 Attachment 26 Page 9 of 12

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

111.000

Combustion Turbines - 2016 06/05/2015

To ficilitate also be dedicions by Marketing, provide an estimate for a 12 man, 24 nour and agrinour delay to the Outage Start, assuming the Return to Service data would have to star the same

QCIAV	. his toll of Dalay
12 Hours	\$6,812
24 Hours	\$10,218
48 Hours	\$11,921

	Agreemen	t
Cotage Manager	Noblooper	1000 May 5/15
Outage Owner	asto	May 6/15
Exocative Oviner:		Dates

2016 ACE SBA IR-18 Attachment 26 Page 10 of 12

QP-G001 Shutdown Standardization Planned Outago Charter Asset Management Office Combustion Turbines - 2016 06/05/2015

4

2016 PLANNED OUTAGE CHARTER

Plant / togation: Burnside Combustion Turbines

UNIC

ERECUTIVE OWNER	Dave Pickles
Outage Owner	Tony Stevens
Outage Owners Outage Managors	Robert Cooper

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage Inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, Insurers recommendations, root cause failure analyses, and other sources.

	Shutdown Targets and Deliverables
1	No Lost Time or Medical Ald Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage start.
6	100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both Internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

Alunformation submitted in this process will be used by the NSP solely to support at the college of the NSPC, send and associated bolicles, stong as an an procedural. Algorer nogo level typication submitted in a appropriate solution and the send for a different bound of the sec

				-	
Start Date	N/A	Ime		Is a Recall Possible?	N/A
First Re-Sync	N/A	Time	-	Time to Recall (Days / Hours)	-
Commercial Operation	N/A	Time	-	Estimated Cost to Recall	-

COMMENTS: (Driver for timuline, include interaction and impacts on other outages, generation and/or transmission) Awaiting Unit Restoration Project Approval, No TMS Timeframe Required.

2016 ACE SBA IR-18 Attachment 26 Page 11 of 12

QP-6001 Shutdown Standardization Planned Outage Charter Asset Management Office

2

ofacilitete disputch decisions by Markeling i

ł

Combustion Turbines - 2016 06/05/2015

	Operating Overview and High	Level Budget	
	Neim Description	Scintinge Budget - Bion	ntey Cong Load Wang
1	? Week Minor Outage Maintenance Activities (\$ / Week)	\$215,000	
2	Balance of Plant Preventative Maintenance Activities	Included	
3	Balance of Plant Corrective Maintenance Activities	Included	
4	Full Hot Section Inspection (TGA Assessment 2016)	\$38,500	
Torals.		Sec. Settle Police Sec. So.	

			a service and a service of the servi				1 S. A. A. A. A.		
		- i i i i i i i i i i i i i i i i i i i				- Al-2			udget
	10 H	Z. 1		10 M	7124488				LINNA
				15I B I					
			- AL.					••••••••••••••••••••••••••••••••••••••	

\$9,000,000

Section 2018

ur delay to the Outage Start, assumi

nathe Return to

 1
 BGT4 Unit Restoration (Phase 2 - New Generator, FT, Auxillaries. Engine (Done) Awaiting Approval in 2015, Most work will take place in 2016)

 Total:

nem Dasmietton

	Planning Milestones	
1	Ford of Q1, 2015 Finalized work plan, draft capital list, draft budget	Oate March 31, 2015
2	End of Q2, 2015 Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015
3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015

	Risk Identification	ancio tollive	
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
2			
du este este	Define-mitgstion and / or contingency stratagies where propability or impact	aterbight	
1	Consider possible contingency scenarios should something be found. Manage throug Management team and industry experts to determine best path forward for any unp	• •	

Delay of Outage Start

vide en estimate for a 12-ho

Dulay	ist Con of Delay is
12 Hours	N/A
24 Hours	N/A
48 Hours	N/A

2016 ACE SBA IR-18 Attachment 26 Page 12 of 12

.

QP-G001 Shutdown Standardization
Planned Outage Charter
Asset Management Office

Combustion Turbines - 2016 06/05/2015

	Agreement	
Outage Haatingen	Mohloone	1000 May 5/15
exetining onwear routsta minuter		and May 61(8
(Accession of the second s		

.

.

.

2016 ACE SBA IR-18 Attachment 27 Page 1 of 6

QP-6001 Shutdown Standardization Planned Outage Charter Asset Management Office

eau(() a chunge

(16)7/410

STATISTICS.

Combustion Turbines - 2016 06/05/2015

4

2016 PLANNED OUTAGE CHARTER

Plant / Location: Tufts Cove Combustion Turbines

a alimine as

Aŭ Emera Co

	luns	cove	Compustion	Turbines
525 <u>0</u> .		_		

Dave Pickles Tony Stevens Robert Cooper

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

	Shutdown Targets and Deliverables
1	No Lost Time or Medical Ald Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage start,
6	100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

Aluptormation submitted in this process will be used by the older in support of the algorithmic to the object of the

Stert Date	10-Oct-16	Time	-	Isra Recall Possible?	No
First-Re-Sync	14-Nov-16	Time	-	Time to Recall (Days/ Hours)	-
Commercial Operation	14-Nov-16	lime:	-	Estimated Cost to Recall	-

COMMENTS: (Driver for simeline, include interaction and impacts on other outages, generation and/or transmission)

5 Week Minor Maintenance Outage, Outage Starts on Mondays is preferable for CTs.

No Recall Available - Generator Out Inspection

Outage Could be Extended Should a Generator Refurbishment be Required.

2016 ACE SBA IR-18 Attachment 27 Page 2 of 6 QP-G001 Shutdown Standardization **Combustion Turbines - 2016** Planned Outage Charter 06/05/2015 Asset Management Office **Operating Overview and High Level Budget** Toro describitos Different. 5 Week Minor Outage Maintenance Activities (\$ / Week) \$250,000 1 - (c) al 52460.000 **Capital Overview and High Level Budget** TARDEASEIDED (-0,0,0)TUC4 LM6000 - Generator Rotor Out Inspection (CAP) \$200,000 1,500,000 1 2 TUC4 LM6000 - Air House Modifications (If Not Completed in 2015) \$300,000 3 TUC4 LM6000 Hydraulic Pumps (If not done in 2015) \$318,000 Total - 000, 0, 000 24 (2 4(1) (2 (0))) Planning Milestones End of Q1, 2015 - Finalized work plan, draft capital list, draft budget March 31, 2015 1 End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget June 30, 2015 2 September 30, 2015 3 End of Q3, 2015 - Finalized budget, capital program and maintenance scope. **Risk Identification** a participation of the second of the second s A CARLES AND A CARLES Late identification or approval of scope may result in unprepardness for the outage. 1 Low Low (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.) Risk that Generator Out Inspection reveals that a Rotor Refurbishment will be 2 Med High required. 3 Define mitigation and / or contingency stratagies where probability on impact are hight Consider possible contingency scenarios should something be found. Manage through with support from Asset 1

Management team and industry experts to determine best path forward for any unplanned repairs.

2 Prepare Contingency Plan for Rotor Refurbishment should it be immediately required.

3

Delay of Outage Start

r fail[hais alsoatch secisions by Markeding, provide in astimute for a 12 hour, 24 from and 48 hour to by the Quege Start, assuming the Feture for hyperto start file 3 min.

Detay	For Control Dolay
12 Hours	\$6,812
24 Hours	\$10,218
48 Hours	\$11,921

2016 ACE SBA IR-18 Attachment 27 Page 3 of 6

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

1

Combustion Turbines - 2016 06/05/2015

	Agreement	
outage Willinger	Norlooper	May 5/15
Outage Owner	2AC>	man 6/15
Recutive Owner		and fine (fit

2016 ACE SBA IR-18 Attachment 27 Page 4 of 6

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

Plant / Location

Combustion Turbines - 2016 06/05/2015

5

2016 PLANNED OUTAGE CHARTER

397166

Tufts Cove Combustion Turbines

Executive Diunei
Gutage Gwinst
Gurage Managen

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

10 C 👝	In a set of					
	mutor	owner	argets	and Di	euvera	pies
it as 🖂	a state of the state of the	an an an tao amin' an		2,00,25,000		

1	No Lost Time or Medical Aid Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage start
6	100% of Identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both Internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

All promision submitted in the process will be used by the NSP solar in support of us ovilgations under NERC, FAM and associated in blens, standards and procedure All submitted into main our sections operations operated by a subcode the anti-operation of the section of the s

Start Date	06-Sep-16	Time:	-	Is a Recall Possible?	No
First Re-Sync	11-Oct-16	Time	Ħ	Time to Recall (Days / Hours)	
Commercial Operation	11-Oct-16	Time:	-	Estimated Cost to Recall	-

COMMENTS: (Driver for timeline, include interaction and impacts on other outages, generation and/or transmission). 5 Week Minor Maintenance Outage, Outage Starts on Mondays is preferable for CTs. (September 5th is a Holiday) No Recall Available - Generator Out Inspection

Outage Could be Extended Should a Generator Refurbishment be Required.

2016 ACE SBA IR-18 Attachment 27 Page 5 of 6

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

F

Combustion Turbines - 2016 06/05/2015

	Operating Overview and High I	Level Budge	and the state of the	
	trem taser liption	Rudget	Conjungerev Volum	iong kan Maka
1	5 Week Minor Outage Maintenance Activities (\$ / Week)	\$250,000		
Total		5, (n.000)		
	Capital Overview and High Le	evel Budget		
	PartiPesciption			
1	TUC5 - LM6000 Generator Rotor Out Inspection	\$150,000	Pian 1,500,000	<u>estantis</u>
2	TUC5 - LM6000 Hydraulic Pumps (if not done in 2015)	\$318,000		
Total	A LARK C A A MONTE LARK ALDES		SU SOLOOO	
PITAL -	-> MARK 6 CONTROLS UPGRAPES Planning Milestone	The second state of the se	-8400,00	
		•		<u>к</u>
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget March 31, 2015			
2	End of Q2, 2015 – Finalized capital plan, more accurate work scope (labour plan) and budget June 30, 2015			
3	End of Q3, 2015 Finalized budget, capital program and maintenance scope.		Septembe	r 30, 2015
	Risk Identification			
	NAKO			
1	Late identification or approval of scope may result in unprepardn	ness for the outage.	Lou	tou
L _	(Materials not procured, Contracts not finalized, Proper budgets	not in place, Etc.)	Low	Low
2	Risk that Generator Out Inspection reveals that a Rotor Refurbish	iment will be	Med	High
2	required.		WIGU	1080

3.			
	Define mitigation and / or contingency stratagies while e probability or impact archight		
	Consider possible contingency scenarios should something be found. Manage through with support from Asset		
	Management team and industry experts to determine best path forward for any unplanned repairs.		
2	2 Prepare Contingency Plan for Rotor Refurbishment should it be immediately required.		
3			

Delay of Outage Start To fashing to the during start design by Marketing, provide an estimation of 2 hour 24 hour and 40 hour detay to the during start assuming the beam of the during start as the during start assuming the beam of the during start assuming the beam of the during start assuming the during start as the during star

Deau	Est. Cour of Delay
12 Hours	\$6,812
24 Hours	\$10,218
48 Hours	\$11,921

		2016 ACE SBA IR-18 Attachment 27 Page 6 of 6
QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office		Combustion Turbines - 2016 06/05/2015
Guteau Wanaper Gutege Ownen Skecadive Gwindh	Agreement	Davis May 5/15 Davis May 6/15 Davis June 1/15
	18/27	

2016 ACE SBA IR-18 Attachment 28 Page 1 of 3

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

J.

Combustion Turbines - 2016 06/05/2015

1

2016 PLANNED OUTAGE CHARTER

a de la companya de la

Tusket Combustion Turbines

14254	10.000-000000
1000	25 A & 25 A
1833 I	S
4 P 2 1	Carl Mar March

Exercitive Owner.	Dave Pickles
Quiage Clumer	Tony Stevens
Outage Manager.	Robert Cooper

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

	Shutdown Targets and Deliverables
1	No Lost Time or Medical Aid Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage start.
6	100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

All information submitted in this process will be used by the AISP fole win support of its obligations under NERC. FAM and associated inslicits, standards and provodupros

Start Date	06-Jun-16	Line		Is a Recall Possible?	Yes
Airst Re-Syne	27-Jun-16	Tomes	-	Time to Recall (Days / Hours)	4 Days
Commercial Operation	27-Jun-16	Time:	-	Estimated Cost to Recall	\$27,248

COMMENTS: [Driver for timeline,] bolude interaction and impacts on other outages, generation and/or transmission] 3 Week Minor Maintenance Outage, Outage Starts on Mondays is preferable for CTs. Re-Call May be Possible, Based on Outage Progress at the time.

Estimate Cost to Recall roughly based on "Cost of Delay Unit Starts for Tufts Cove"

3 Weeks Required for Controls Upgrades.

2016 ACE SBA IR-18 Attachment 28 Page 2 of 3

QP-G0D1 Shutdown Standardization Planned Outage Charter Asset Management Office

2

Combustion Turbines - 2016 06/05/2015

	Operating Overview and High		Mingal Andrew
	iten Postijation	Budger	ininge av storeste Plan - Mata
1	3 Week Minor Outage Maintenance Activities (\$ / Week)	\$290,000	
2	Balance of Plant Preventative Maintenance Activities	Included	
3	Balance of Plant Corrective Maintenance Activities	Included	
4	Full Hot Section Inspection (TGA Assessment 2016)	\$38,500	

	Capital Overview and High Level	Budget	한 가는 한 한 한 한 한 한 한 한 같은 것은 한 한 한 한 한 한 한 한 한 한	
	terruinzest. Martin	Budgen	Coentrome)	- tong site
1	Tusket Controls Systems Upgrades (Deferred from 2015)	\$442,000		
2	Tusket Fuel Tank Upgrades			
Total		3442.000	\$0	

	Planning Milestones	
	F /idestone	Data
1	End of Q1, 2015 Finalized work plan, draft capital list, draft budget	March 31, 2015
2	End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015
3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015

	Risk Identification	CIRCLE DILLEY	
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
2	Define milligation and / or contingenevaliatogies ordern propability or impact	ake ngo	
1	Consider possible contingency scenarios should something be found. Manage throug Management team and industry experts to determine best path forward for any unp		

Delay of Outage Start

- Oriny	Hat Cott of Delay
12 Hours	\$6,812
24 Hours	\$10,218
48 Hours	\$11,921

Agreement

r

20/27

2016 ACE SBA IR-18 Attachment 28 Page 3 of 3

QP-GOQ1 Shutdown Standardization Planned Outage Charter Asset Management Office

ŝ

Combustion Turbines - 2016 06/05/2015

Pin () 400 NOR Datas N

.

.

2016 ACE SBA IR-18 Attachment 29 Page 1 of 6

QP-GO01 Shutdown Standardization Planned Outage Charter Asset Management Office Combustion Turbines - 2016 06/05/2015

1

tappards and procedure

2016 PLANNED OUTAGE CHARTER

Victoria Junction Combustion Turbines

950555	X84-53	1		a	·
2.2		i de la compañía de l	11.2	8	
in the set	S 14	16.63	50.05	4	
State and and		人 ちろ (品	HI GAS	11	

Executive Owders	
Ourspe Cityner	
Outrage Managar: Robert Cooper	

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, Insurers recommendations, root cause failure analyses, and other sources.

	Shutdown Targets and Deliverables
1	No Lost Time or Medical Ald Incidents
2	No Environmental incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage start.
6	100% of Identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning.

Outage TMS Request

in subinities of the second of the second states and the second second second second second second second second

Start Date	02-May-16	Time:	24	Is a Recall Possible?	Yes
First Re-Sync	16-May-16	s filme:	m.	Time to Recall (Days / Hours)	4 Days
Commercial Operation	16-May-16	Tume:	-	Estimated Cost to Recall	\$27,248

COMMENTS: (Driver for timeline: include interaction and impacts on other outages, generation and/ortconsmission) 2 Week Minor Maintenance Outage, Outage Starts on Mondays is preferable for CTs. Re-Call May be Possible, Based on Outage Progress at the time. Estimate Cost to Recall roughly based on "Cost of Delay Unit Starts for Tufts Cove"

2016 ACE SBA IR-18 Attachment 29 Page 2 of 6,

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

2

Combustion Turbines - 2016 06/05/2015

a date would

Ahe Retur

	Operating Overview and High	Level Budget
	tomeniquition.	Puoloo Continensy units of
1	2 Week Minor Outage Maintenance Activities (\$ / Week)	\$290,000
2	Balance of Plant Preventative Maintenance Activities	Included
3	Balance of Plant Corrective Maintenance Activities	Included
4	Hot Section Inspection (TGA Assessment 2016)	\$76,000
5	Generator Rotor in Inspection (TGA Assessment 2016)	\$36,000
Total		Sector Contraction

Capital Overview and High Level	Budget	
Red Description	- Dudren - Comingeniy	estanciand.
Hydraulic Start Systems Upgrades (Depends on Success with Tusket Project i in 2015, Recorded as "Contingency")	\$300,000	·
toral (2800.000E	
Planning Milestones		

		lise a straight of the second s	
		AVIIIA None	
	1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015
ļ	2	End of Q2, 2015 - Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015
	3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015

	Risk Identification		-slapplers
1	Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
2	Define mitigation and / or contingency strategies. Where probability of impact	are High	
1	Consider possible contingency scenarios should something be found. Manage throug Management team and industry experts to determine best path forward for any unp		

Delay of Outage Start

ale sone subviets varantse er of service an editorique in event vervicable in tradition of an information of an American vervice

Colay	lat Cost of Delay
12 Hours	\$6,812
24 Hours	\$10,218
48 Hours	\$11,921

2016 ACE SBA IR-18 Attachment 29 Page 3 of 6

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

.

 \mathbf{v}^{i}

Combustion Turbines - 2016 06/05/2015

	Agreement	
Quiago (Sanagar)	Rollooper	pares May 5/15
Quista nunor	after.	May 6/15
Evenueive el voren	1 AN	Den 2 Line 115

2016 ACE SBA IR-18 Attachment 29 Page 4 of 6

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office

Right / Location

Combustion Turbines - 2016 06/05/2015

2

2016 PLANNED OUTAGE CHARTER

Victoria Junction Combustion Turbines

Executive Commit:	Dave Pickles
Ourage Owner	Tony Stevens
Quitage ØV(net) Quitage Managan	Robert Cooper

Background Information

The Charter is based on the Standardized Outage Quality Process. The charter identifies our major Outage activities for the upcoming Outage, and provides a high level overview of the scope and budget. There are a number of capital projects, maintenance, and inspections scheduled which will require the generating units to be off-line. The inspections and projects may be time stamped, some are driven from OEM recommendations, some are guided by standards and regulations, and others by plant maintenance practices and programs. These high level items may be identified through thorough review of previous Outage Inspections, asset health assessments and Reliability Teams, Equipment Maintenance & Operating History, insurers recommendations, root cause failure analyses, and other sources.

	Shutdown Targets and Deliverables
1	No Lost Time or Medical Aid Incidents
2	No Environmental Incidents.
3	Execute the planned work during the Outages safely, on time and on budget.
4	Identify long-lead materials and track to delivery in time for Outage execution.
5	Identify Contract work associated with the Outage, and have RFPs/RFQs prepared to allow Contract finalization in advance of Outage start.
6	100% of identified "High Priority" work completed, 70% of "Medium Priority" work completed.
7	Document the Outage and utilize the tools developed through the Outage Standardization Process to support both internal, and external auditing processes. Special focus to be taken to identify and record risks, change and learnings.
8	Prepare scope and budgets as required to meet Milestones for Capital, Operating and Outage Planning,

Outage TMS Request

All/normation submitted in all Spice as SVII above Dp. His NSR solely in Support of He SBI Fedores under NERC, FAM and associate an all sets All submitted information will up assigned the appropriate confidentiality level upon receipt.

Start Date	16-May-16	Timen		Is a Recall Possi	jie?	Yes
First Re-Sync	30-May-16	Time	-	fime to Recall (lays / Hours)	4 Days
Commercial Operation	30-May-16	Time:		Estimated Cost t	o Recall	\$27,248

COMMENTS: (Driver for timeline, include interaction and impacts on other outages, generation and/ontransmission)

2 Week Minor Maintenance Outage, Outage Starts on Mondays is preferable for CTs.

Re-Call May be Possible, Based on Outage Progress at the time.

Estimate Cost to Recall roughly based on "Cost of Delay Unit Starts for Tufts Cove"

2016 ACE SBA IR-18 Attachment 29 Page 5 of 6

QP-G001 Shutdown Standardization Planned Outage Chartor Asset Management Office

To racilitate disparch decisions by Markati

Combustion Turbines - 2016 06/05/2015

Operating Overview and High Level Budget

	rtem Opticitation	Budhet	Contingentos:	i ingelæfel Stangelæfel
1	2 Week Minor Outage Maintenance Activities (\$ / Week)	\$290,000		
2	Balance of Plant Preventative Maintenance Activities	Included		
3	Balance of Plant Corrective Maintenance Activities	Included		
4	Quick Hot Section Inspection (TGA Assessment 2016)	\$76,000		
5	Generator Rotor In Inspection (TGA Assessment 2016)	\$36,000	1	
6	Field Inspection of Welded Free Turbine Vanes	Included	\$70,000	
Tomi		0152102-01010	5. SZO DOD -	

	Capital Overview and High Level	Budget		
	(Kam Beschor) on	Bunget	-Contenganov. Phan	Natis
1	Hydraulic Start Systems Upgrades (Depends on Success with Tusket Project in 2015, Recorded as "Contingency")		\$ 30 0,000	
South the state of		Sin	South Report	

	Planning Milestones	
1	End of Q1, 2015 – Finalized work plan, draft capital list, draft budget	March 31, 2015
2	End of Q2, 2015 – Finalized capital plan, more accurate work scope (labour plan) and budget	June 30, 2015
3	End of Q3, 2015 – Finalized budget, capital program and maintenance scope.	September 30, 2015

	Risk Identification		
1	Buck Late identification or approval of scope may result in unprepardness for the outage. (Materials not procured, Contracts not finalized, Proper budgets not in place, Etc.)	Low	Low
2	Define utiligation and / optionningency strategies.Where are hability of impact	ere nigh	
1	Consider possible contingency scenarios should something be found. Manage throug Management team and industry experts to determine best path forward for any unp		
2			

Delay of Outage Start

have to stay the same.

2016 ACE SBA IR-18 Attachment 29 Page 6 of 6,

QP-G001 Shutdown Standardization Planned Outage Charter Asset Management Office Combustion Turbines - 2016 06/05/2015

Deley	INI-CON OF Delev
12 Hours	\$6,812
24 Hours	\$10,218
48 Hours	\$11,921

	Agreement	
onota manares	Mohlooper	050 May 5/15
Outage Owner	2.500	Dore May 6/15
EXECUTIVE OWNER		Date any CIT

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-19:	
2		
3	Please provide a	detailed explanation of NSPI's long-term operating strategy for each of
4	the Lingan gene	erating units, including the age of each unit, the estimated remaining
5	operating life of	each unit, and projected major capital spending projects over the next 5
6	years. Please also	o specify how the operating strategy has been updated or changed since the
7	previous ACE Pl	an was filed.
8		
9	Response IR-19:	
10		
11	Lingan 1 – Comm	nissioned 1979, Forecasted operating life beyond 15 years:
12		
13	• Lir	ngan 1 is a flexible unit with two-shifting capability and no significant
14	ope	erating limitations.
15		
16	• As	set planning is based on gradual reduction in capacity factor and service hours
17	off	set by increased two-shift utilization to the end of the decade.
18		
19	• Pos	st 2020, it is anticipated that this unit will see ultra-low utilization for more
20	tha	nn a decade.
21		
22	• Ba	sed on the anticipated reduction in future utilization, major investments are not
23	pla	nned at this time. Tactical investments will be made based on year over year
24	ass	sessments.
25		
26	• The	ere is no change in operating strategy since the last ACE submission.
27		
28	Lingan 2 – Comm	nissioned 1980; Forecasted operating life until 2018:
29		
30	• Lir	ngan 2 is being life managed with anticipated retirement in 2018.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1		
2	•	Major outages and investments are being avoided in this unit.
3		
4	•	Risks are being mitigated with operating limitations:
5		
6		Restricted stop/start cycles
7		• Long duration layups to preserve remaining life for winter operation
8		
9	•	There is no change in operating strategy since the last ACE submission.
10		
11	Lingan 3 – Co	ommissioned 1983, Forecasted operating life beyond 20 years:
12		
13	•	Lingan 3 has undergone a major refit in 2015 and has been positioned for full
14		service and flexible operation.
15		
16	•	Lingan 3 is anticipated to be operational for several more major maintenance
17		intervals (decades).
18		
19	•	This unit will continue to have investments in all asset classes similar to
20		historical. The next major maintenance interval is planned for 2023.
21		
22	٠	There is no change in operating strategy since the last ACE submission.
23		
24	Lingan 4 – Co	ommissioned 1984, Forecasted operating life beyond 20 years:
25		
26	•	Lingan 4 will undergo a major refit in 2016 and has been positioned for full
27		service and flexible operation.
28		
29	•	Major investments include:

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1		
2		• L-0 LP Turbine Blades
3		• Generator Rotor
4		Generator retaining rings
5		
6	•	Lingan 4 is anticipated to be operational for several more major maintenance
7		intervals (decades).
8		
9	•	This unit will continue to have investments in all asset classes similar to
10		historical. The next major maintenance interval is planned for 2024.
11		
12	•	There is no change in operating strategy since the 2015 ACE Plan submission.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-20:		
2			
3	For C	For CI# 47658:	
4			
5	(a)	Did the L-0 blades ever require maintenance in the past? If so, please provide the	
6		date(s) and explain the maintenance done to the blades.	
7			
8	(b)	Please provide any evaluations, reports, or inspection studies performed to indicate	
9		that the blades are at their end of life and replacement is recommended.	
10			
11	(c)	If the blades have not been an issue in the past, then why are recent signs of erosion	
12		and risk of blade separation a cause for immediate concern?	
13			
14	(d)	When is the Lingan #4 unit expected to be retired?	
15			
16	Respo	nse IR-20:	
17			
18	(a)	The maintenance strategy includes annual inspection requirements of the exhaust end of	
19		the L-0 Blades via the steam space in the condenser. Previous maintenance included	
20		modest remedial work to address inspection findings and include: blade fastening pin	
21		replacements and shield replacements. Please refer to Attachment 1 (excerpt from	
22		Lingan 4 TGA Turbine Assessment). In the report TGA summarizes historical outage	
23		work. As indicated, there were only inspection activities on LP blades with no actionable	
24		findings in 1998 and 1996. In 2008 there were findings requiring modest repair (pins and	
25		shields) and the first indication from OEM that L-0 blades would require future	
26		replacement. In 2011, TGA reinforced that a plan for replacement was required and	
27		ongoing monitoring of condition necessary to mitigate risks. Ongoing monitoring of	
28		condition and anticipated utilization of has lead NS Power to act on L-0 blade	
29		replacement in 2016.	
30			

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	(b)	Please refer to Attachment 1 (excerpt from Lingan 4 TGA Turbine Assessment).
2		Advanced erosion is an ongoing risk that continues to worsen with service life expended
3		and changing unit operating mission profiles. In 2008 the OEM indicated need to plan
4		for replacement (Attachment 1). In 2011 TGA indicated need to develop plan for
5		replacement (Attachment 1).
6		
7	(c)	The blade life has been managed. While there is no immediate concern of failure, there
8		would be much concern about operating these blades to the next maintenance interval
9		(Approximately 8 years). The L-0 blades on Lingan 4 are original with approximately
10		240,000 operating hours as of 2015. They are approaching end of life.
11		
12		Given the accumulated running hours, projected operation, known erosion, and
13		experience with Lingan 3, it has been determined that the blades should be replaced
14		during its next scheduled inspection in 2016.
15		
16	(d)	Please refer to NSUARB IR-44.

2016 ACE SBA IR-20 Attachment 1 Page 1 of 8

Lingan Unit 4 Turbine-Generator Health Assessment October, 2011 TG Advisers, Inc. (10) Executive Summary of Outage Reports

Annual Overhaul Maintenance Activity June 1988

Scope of Report

This summary documents the 1988 annual overhaul maintenance activities on Lingan Unit 4.

Summary

- The turbine main steam stop valve was stripped and inspected. The valve was found in good condition, by-pass valve stroke checked and found within tolerance and spindle bushings clearances restored to acceptable design tolerance. The M.S.V. strainer mesh welds were all dye checked and found to be o.k.
- The lower control valves were dismantled, inspected, bushings honed and clearances restored to design tolerance. New camshaft bushings were installed and one spring stud bolt required replacement.
- Oil baffles from #1 and #2 bearings were removed, cleaned, inspected and reinstalled.
- Final stage blading in the L.P. rotor was inspected at turbine and generator ends and found in good condition. Rubber mold impressions of the L.P. blading and exhaust flares were taken for future reference.
- The seal oil vacuum tank was drained, cleaned and inspected. All internals found in good condition.
- The A.C. seal oil pump was replaced.
- Both turbine lube oil coolers were opened, cleaned and inspected. No defects were noted.

Recommendations

No recommendations were given in this report.

2016 ACE SBA IR-20 Attachment 1 Page 2 of 8

Lingan Unit 4 Turbine-Generator Health Assessment October, 2011 TG Advisers, Inc. (25) Executive Summary of Outage Reports

Turbine Overhaul Inspection Report Toshiba Corporation May 1996

Scope of Report

This summary documents turbine overhaul findings as reported by the Toshiba service engineer (author unknown) during the 1996 turbine/generator inspection.

Summary

HP Outer Casing

- Heavy scaling on horizontal joint and sealing surfaces. Polished with stone.
- Packing head spigot fit to casings had some scuffing. Repaired by filing and stoning.
- Visual inspection good

HP Inner Casing

- Heavy scaling on horizontal joint and sealing surfaces. Polished with stone.
- Drilled out and replaced bolts #70 (4") and #74 & #76 (3.5")
- Replaced nuts #70, #72, #74, #74, #75, #76
- Vibration induced damage to gib keyway on gen. side upper half. Used as is.
- Mag particle and ultrasonic test was good. (No specific inspection report)
- Visual inspection good
- Replaced upper half nozzle diaphragm pins and set screws

IP Inner Casing

- Heavy scaling on horizontal joint and sealing surfaces. Polished with stone.
- Vibration induced damage to gib keyway on turb. side upper half. Replaced gib key bolts.
- Mag particle and ultrasonic test was good. (No specific inspection report)
- Visual inspection good

LP Outer Casing

- Visual inspection good
- No erosion found.

LP Inner Casing

- Horizontal joint erosion. Repair welded
- Erosion found at drain hole of diaphragm #19. No repair noted
- Erosion found on steam guide plates. Weld repaired.
- Replaced bolts nos. 80, 81, 82, 83, 87, 89
- Mag particle test found indication on lower half of horizontal joint. Repair welded.

Nozzle Diaphragms (HP/IP/LP)

2016 ACE SBA IR-20 Attachment 1 Page 3 of 8

- Mag particle tested.
- Replaced dowel pin on IP #9&11
- Repaired damaged fins and bent nozzle partitions (no specific repairs were noted)

HP Rotor

- Rubbing between spill strips and shroud cover plates on stages HP-2,3,4 and IP 8,9,10,11.
- Removed foreign material on back side of shroud cover plates on HP stages 2,3,4.
- Visually inspected journals, thrust collar, emergency trip ring, coupling surfaces, coupling bolt holes all found in good condition.
- Found zero clearance between shroud cover plates and blades
- #1, 2, 3 gland packing areas in good condition
- Mag particle test. Results good.

LP Rotor

- Erosion on T20 and G20 blades
- Mag particle test. Results good.
- Visually inspected journals, coupling surfaces, coupling bolt holes. Found #3 journal damaged by foreign material in lube oil. Repaired scuffed coupling bolt holes.
- #4, 5 gland packing areas in good condition.
- Found zero clearance between shroud cover plates and blades.
- Turning gear ring contact good.

Bearings

- #1 PT check and contact between journal and pad metal was good.
- #2 PT check and contact between journal and pad metal was good.
- #3 PT check found separation. Also babbitt damage. Repaired.
- #4 PT check found separation. Contact between journal and babbitt was good.
- Thrust bearing Repaired minor pad damage. Contact between pads and thrust collar was good.

Speed governor

- Realigned (shim replacement)
- Spline shaft contact, drive backlash and gear teeth contact were good.

Emergency Trip Device

• Clearance adjusted with shims (1.18 mm to 1.75 mm)

Turning Gear

• Gear tooth contact and backlash were good.

Alignment

• Found HP to LP rotor out of alignment. Corrected by shimming #1 and #2 bearings.

Recommendations

This report contained no recommendation.

2016 ACE SBA IR-20 Attachment 1 Page 4 of 8

Lingan Unit 4 Turbine-Generator Health Assessment October, 2011 TG Advisers, Inc. (49) Executive Summary of Outage Reports

Toshiba 4 Overhaul Outage Report

October 2008 (Shigeru Tsuji)

Scope of Report

This summary documents the report issued by Toshiba, covering the overhaul of the Lingan Unit 4 turbine and generator in 2008. The report includes an addendum, authored by Mr. Tsuji, listing specific recommendations for the next outage. This was redundant to the recommendations found in the main body of the report. For ease of review, all future outage recommendations listed have been included in one recommendations section. Details of the generator overhaul are described in a separate report.

Summary

- Lingan Power Stations portion of the scope of work included the HP/IP Turbine disassemble/inspection/reassembly, LP Turbine disassemble/inspection/reassemble, Generator disassemble/inspection/rewedge/reassemble and valve disassemble/inspections/reassembly.
- Toshiba and ReGenCo's portion of the scope of work included providing technical direction, inspection assistance and re-wedging the generator.
- Additional scope added to ReGenCo and Reliable Turbine Services (RTS) was a weld repair to #8 diaphragm partitions.
- Additional scope added to ReGenCo was repair to 1st stage diaphragm partitions.
- The HP/IP and LP Turbine scope included bore inspection of the rotors, outer cylinders, inner cylinders, diaphragms, inner/outer glands, and front standard on site.
- The generator scope of work included inspection and testing of the stator and rotor, re-wedge work, and H2 cooler work on site.
- The valve scope of work included inspection of the MSV, Control Valves, and CRV internal components.

Recommendations

Recommendations listed in the Tsuji addenda were accompanied by a priority key per the following:

- (A) Reexamine the problem at a future inspection
- (AA) Suggest repair at the next inspection
- (AAA) Recommend repair at the next inspection

HP/IP Section

- Perform TTIL-KS91002X for nozzle support pins.
- Found excessive clearance and tooth damage on HP gland packing rings #1, #2, and #3. Replace packing rings and perform Tops On/Tops Off alignment. Priority (AAA)
- Inner casing horizontal joint stud #53. Replace with new stud. Priority (AAA)

2016 ACE SBA IR-20 Attachment 1 Page 5 of 8

- Outer casing horizontal joint studs #1 and #2. Found bent and touching casing holes. Replace studs. Priority (AAA)
- Found key slot damage on running keys at TR, TL, GR, and GL. Replace all (4) keys. Priority (AAA)
- HP 7th stage, IP 8th stage and IP 14th stage nozzles had damaged Z-1 long teeth on the upper and lower halves. Replace all Z-1 teeth. Priority (AAA)
- IP 8th stage damaged due to steam erosion. Replace nozzle. Priority (none given)
- Replace all HP/IP packing, due to excessive clearances.

LP Section

- Broken pin found on last stage blade T-20 on turbine end. Replace pin. Priority (AAA)
- Found L-0 erosion shield plates worn. Recommend possible replacement. Priority (AAA)

Bearings

• Excessive oil fin wear on bearings #1 and #2. Replace all fins. Priority (AAA) May be duplicate recommendation – Retooth 1G and 4G oil deflectors

Valves (general)

• Have lapping tools on hand for valve seats and stem guide seats. Minimum machining is required for the stem guide packing face and valve bodies on the MSV and CRV. Priority (AAA)

Main Stop Valve

• Replace stem due to excessive runout. Priority (AAA)

• Head cap does not have additional room for staking of head bolts. Replace head cap. Note: Head cap can be machined one time in lieu of replacement. Priority (AAA)

Control Valves

- Replace CV2 valve stem due to excessive wear. Priority (AAA)
- Replace CV4 and CV8 valve stems due to excessive runout. Priority (AAA)
- Have spare parts on hand for valve CV3 (stem and bushings). Priority (AAA)
- Replace CV8 upper and lower bushings, due to excessive clearances. Priority (AAA)

Rotor Couplings

• Coupling up of HP and LP rotors was difficult. Redress spigot fits. Priority (AAA)

Work Performed

HP/IP Turbine

• Disassembled and inspected components to include outer cylinder, inner cylinders, rotor, bearing, diaphragms, packings, and gland seals. Additional work required included an incol 82 partition weld repair on #8 diaphragm, correcting bad blue contact checks for #1 and #2 bearings, NDE and bonding check of # 1 and #2 bearing, blast cleaning of components, NDE and bore scope of rotor, and NDE of casing studs.

LP Turbine

2016 ACE SBA IR-20 Attachment 1 Page 6 of 8

• Disassembled and inspected components to include outer cylinder, inner cylinders, rotor, bearing, diaphragms, packings, and gland seals. Additional work required included a blue check and repair of the inner cylinder, correcting bad blue contact checks for #3 and #4 bearings, NDE and bonding check of #3 and #4 bearing, blast cleaning of components, NDE and borescope of rotor, drilling out and replacing horizontal joint bolts. Gland packing heads for 4 and 5 were replaced.

Main Stop Valve

• Disassembled, inspected components and reassembled. Found in fair running condition; see exception in Summary of Recommendations.

Control Valves

• Disassembled, inspected components and reassembled. Found in fair running condition; see exception in Summary of Recommendations.

CRV Valve

• Disassembled, inspected components and reassembled. Found in fair running condition; see exception in Summary of Recommendations.

Front Standard

• Disassembled, cleaned, inspected and reassembled. Found in fair running condition; see exception in Summary of Recommendations.

Main Oil Pump

• Disassembled, cleaned, inspected and reassembled. Found in good running condition.

Thrust Bearing

• Disassembled, cleaned, inspected and reassembled. Found in good running condition.

Bearings

• Disassembled, cleaned, blue checked, NDE/bond check, and reassembled. Found in good running condition; see exception in Summary of Recommendations. #3 and #4 bearings were changed out due to excessive clearances.

Oil Deflectors

• Disassembled, cleaned, inspected and reassembled. Found in fair running condition; see exception in Summary of Recommendations.

Turning Gear

• Removed, performed visual inspection and reinstalled. Found in good running condition.

Lube Oil System

• Conducted 24 hour flush.

Generator

See generator report

2016 ACE SBA IR-20 Attachment 1 Page 7 of 8

Exciter

• See generator report

Packing

• Disassembled, cleaned, inspected and reassembled. Found in fair running condition; see exception in Summary of Recommendations.

	Lingan Unit 4 Problem Area Work			
_	Evaluation	_		
lssue #	Problem Area	Risk 0-4 (a)	Probability 0-3 (b)	Availability Factor (a) x (b)
DFLP1	Blade/bucket water droplet erosion and FOD damage	4	2.5	10
DFLP2	Diaphragm cracking, SPE and FOD	3	2	6
DFLP3	Blade/bucket foil and tenon cracking and rubs	3	2	6
DFLP4	Blade/bucket tie wire, lacing wire, and/or tip strut cracking	3	2	6
DFLP5	Blade attachment area cracking	4	2	8
DFLP6	Rotor bore cracking	4	1	4
DFLP7	Cylinder/shell cracking, steam leaks and distortion	2	3	6
DFLP8	Last row blade/bucket stall flutter	3	1.5	4.5
DFLP9	Rotor peripheral and shaft end cracking	4	1	4

2016 ACE SBA IR-20 Attachment 1 Page 8 of 8

Lingan Unit 4 Problem Area Worksheet ISSUE #:		
ISSUE #:	DFLP1	Continued from Previous Page
Action Ite	ms:	a constant and a set of the
•	access points to determine if any un	
	A pre outage inspection should be m as to the amount of shield replacement the previously inspections should be	ent required. Any erosion rate as shown by comparing incorporate.
•		
•	Incorporate following into the outage Obtain replacement erosion shie Complete MT of rotor and blades shroud bands, ferrules, lacing wi	e plan (all LP ends): Ids (based on pre outage inspection). s including accessible shaft radii & surfaces, underside of
		on of the leading and trailing edges of L-1, L-2 and L-3
•		
Investiqa	tors: Greg Carlin	
Date:	June, 2011	

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Reque	est IR-21:
2		
3	For C	I# 47673:
4		
5	(a)	When is the next major planned outage for Lingan Unit #4 after 2016?
6		
7	(b)	Please provide all supporting documentation that shows that the rotor will need to
8		be refurbished.
9		
10	Respo	nse IR-21:
11		
12	(a)	Major outages are typically planned on a base of eight year intervals, with consideration
13		for unit utilization (capacity factor, operating hours, unit starts). In addition, regular
14		health assessments are utilized to refine timing and scope of major outages. Lingan 4 is
15		presently anticipated to have a major outage in 2024.
16		
17	(b)	A summary of TG Advisers assessment of Lingan 4 Turbine/Generator illustrates
18		concerns associated with the generator rotor. Their recommendations include
19		contingency planning for the rewind of the rotor. Please refer to Attachment 1. NS
20		Power Engineering, in consultation with TG Advisers, views replacement necessary to
21		address risk for long term operation.
22		
23		Futhermore, retaining ring replacement is required during the 2016 outage. The rewind
24		effort requires removal of the retaining rings so there is significant cost advantage to
25		conducting the retaining ring and rotor rewind at the same time.

Turbine Generator Health Assessment Outage Plan Summary

Plant	Unit #	Issue #	Availability Factor	Problem Description	Major Outage Assessment Plan and Recommended Corrective Action	Action Items Major Outage	Resp. Engr(s)	Next Major Outage Part/Service Provider		Long Term Contingency Plan Cost (\$)	Last Insp. (Year)	Target Insp. Interval (years)	Comments	Inspection Findings	Date Complete
Lingan	4	GEN5	7.5	Rotor winding	 500 Volts DC and check the Polarization Index. An IR value of at least 20 megohms and a PI of at least 1.5 are desirable. Check rotor field winding impedance and compare to previous historical test values. A significant change in impedance from previous values, when corrected for varying temperatures, could be an indication of a brazed joint failure. Check for shorted turns with a pole balance test (also called a pole drop test) if vibration is a concern. Verify that any field ground alarms are working properly. Inspect pole crossover and 	blocking, etc. If the crossover cannot be viewed directly and inspected for cracks, if the	Willard Cameron	Rewind Install a flux probe. Lead seals and pins (already done on Lingan 1).	\$1,500,000	\$20,000	2010	2018 2018 2018	Unit 4 rotor rewind, depending on Unit 2 results. Stock radial seal pins and O- rings.		

Turbine Generator Health Assessment Outage Plan Summary

Issue #	Availability Factor	Problem Description	Major Outage Assessment Plan and Recommended Corrective Action	Action Items Major Outage	Resp. Engr(s)	Part/Service	Outage	Long Term Contingency Plan Cost (\$)	Сар	Last Insp. (Year)	Target Insp. Interval (years)	Comments	Inspection Findings	Date Complete	
GEN5 (cont'd)			opportunity, plan to inspect the pole crossover with borescope.												

Turbine Generator Health Assessment Outage Plan Summary

Issue #	Availability Factor	Problem Description	Major Outage Assessment Plan and Recommended Corrective Action	Action Items Major Outage	Resp. Engr(s)	Next Major Outage Part/Service Provider		Long Term Contingency Plan Cost (\$)	Cap (Y/N)	Last Insp. (Year)	Target Insp. Interval (years)	Comments	Inspection Findings	Date Complete	
GEN7	12		• At next rotor out outage, replace rings with new 18.18 material that is resistant to stress corrosion cracking.	 New 18.18 rings have long lead time for procurement if not in stock. Procure early and reserve if not already done so. Maintain high level of hydrogen purity. Ensure hydrogen dryers are properly working and desiccant is "recharging." Unmachined spare 18.18 rings are in NSPI stock at Trenton 6. Investigate suitability of these spares across the NSPI fleet. Alternatively, investigate contingency plan for commercial swap with vendors, contractors or other owners. 		Replacement.	\$300,000 procure \$100,000 install			2008	2018	Includes insulation kit.			

2016 ACE SBA IR-21 Attachment 1 Page 4 of 10

Lingan Unit 4 Problem Area Worksheet

TG Advisers, Inc. (47) Problem Area Worksheets

ISSUE #: ____GEN5____ AVAILABILITY FACTOR: ___7.5___

Problem Area:

The **Generator Rotor Field Winding** failures are typically electrical in nature. Electrical failures are usually due to shorted turns or electrical grounds. Shorted turns can cause local hot spots (at the location of the short) and uneven heat distribution throughout the winding. Significant uneven heating will typically manifest itself in noticeable vibration from the generator rotor. Multiple turn shorts may even limit the rotors ability to provide adequate magnetizing intensity to the stator which will result in lower generator output. Electrical grounds can be catastrophic if not corrected.

Many generator rotors can operate with one ground (depending on shaft grounding configurations); however, the second ground will cause circulating currents in the rotor body which can overheat the generator rotor body and likely result in a major forced outage situation. Shorts occur due to contamination or failure of the turn insulation. Grounds occur due to failure of the groundwall insulation, contamination, and tracking. Turn insulation and groundwall insulation can fail due to mechanical fatigue (or puncture) or overheating and breakdown of the dielectric properties.

Background and Description:

The rotor field winding consists of individually insulated copper turns, insulated from ground in the slots by insulating cells, and in the end turns by an insulating tube. The field winding carries dc current, and acts as an electromagnet, inducing a voltage in the stator winding. Spinning at 3600 rpm, large centrifugal forces act on the rotor winding and insulation system. Due to field current heating, and windage and friction, the rotor winding heats up in operation. This adds thermal stress to the insulation system, aging it over time.

- 1986 Rotor Winding Rotor winding impedance of 4.67 and capacitance of 0.297 microfarads.
- 1987 Rotor winding impedance was 4.62 ohms. Capacitance 365 nFarads. PF of 1.04 at 10 kV.
- 1988 Capacitance and impedance tests on rotor. Rotor winding impedance of 4.68. Rotor capacitance of 0.291 microfarads.
- 1990 Lingan 4 generator rotor field winding impedance measured 4.515 ohms and capacitance 0.2817 microfarads.
- 1991 Rotor impedance of 4.82 ohms. Capacitance of 0.279 microfarads.
- 1994 Rotor impedance of 4.95 ohms. Rotor capacitance at .28 pf.
- 1995 Rotor impedance of 4.67 ohms and capacitance 279 nf.

2016 ACE SBA IR-21 Attachment 1 Page 5 of 10

Lingan Unit 4 Problem Area Worksheet

TG Advisers, Inc. (48) Problem Area Worksheets

ISSUE #: ____GEN5____ Continued from Previous Page

Background and Description (continued):

- 1996 The rotor transport box was supplied from St. Catharine's and sent to Lingan for transport of the rotor back to the Parsons' facility in St. Catharine's. A Field Service Supervisor was sent to Lingan P.S. to witness the loading of the rotor in the box. The box also contained an impact recorder to record any serious bumps the rotor may have had during transportation. Receipt Inspection - The rotor was visually inspected and electrically checked. There was no evidence of any adverse effects. During the inspection at the Parson's facility in St. Catherines, the rotor end windings did not show any over-heating or distortion and the interturn insulation was good. The nomex portions of the end winding insulation cylinders were creased and torn. The torn Nomex was separated from the glass portions and new nomex was fitted. EE. Radial stalks don't show signs of leakage. Field winding resistance 0.116 ohms. Rotor IR Checks-Megger readings were taken throughout inspection process and before/after cap replacement. All readings were 1000+ Meg Ohms. Generator Winding OHMIC Resistance - .116 ohms ave. for complete winding (after ring installation and prior to shipment. Rotor Impedance of 4.58 ohms. Capacitance of 0.28 microfarads. Terminal seal leak test: Rotor winding insulation resistance good. Visual inspection of field no problem. Some rust and discoloration. Visual inspection under the retaining ring of the field coils shows no problems. Terminal stud no problem. Pressure test at 300 kPA and vacuum drop test at 100 kPA no leakage. Terminal seal gasket not changed. It's recommended to change terminal stud gasket every 4 years and check for tightness every 2 years per Toshiba recommendations. Field winding meggered 200 Mohms with 500 volt megger prior to reassembly.
- 1998 Capacitance and AC Impedance of the rotor were measured. Rotor impedance measured 4.65 ohms (and again at 4.52 ohms after jumpers removed from generator) and capacitance 331.9 nF.
- 1999 Measured capacitance of the rotor 0.349 microfarads. Measured AC impedance of the rotor – 4.69 ohms.
- 2002 Capacitance and AC Impedance of the rotor were measured. Rotor impedance measured 4.89 ohms and capacitance 278 nF. Measured capacitance of the rotor – 277.34 nf. Measured AC impedance of the rotor – 4.65 ohms
- 2003 Capacitance and AC Impedance of the rotor were measured. Rotor impedance measured 4.58 ohms and capacitance 286 nF.
- 2005 Rotor impedance measured 4.42 ohms and capacitance 0.2798 pf.
- 2006 Rotor impedance values of 4.900 ohms and capacitance of 0.2798 microfarads.
- 2007 Rotor impedance of 4.80 ohms, capacitance of 0.2781 microfarads.

2016 ACE SBA IR-21 Attachment 1 Page 6 of 10

Problem Area Worksheet

TG Advisers, Inc. (49) Problem Area Worksheets

ISSUE #: ____GEN5____ Continued from Previous Page

Background and Description (continued):

- 2008 Generator rotor field (connections broken) 2.8 MΩ with 500 volt megger. Visual inspection of rotor good. Some rust and discoloration. Did not disassemble and inspect terminal seal gaskets (see recommendations). Rotor terminal seals replace gasket every 4 years. 2008 Rotor impedance value of 4.668 and capacitance of 0.2849 microfarads. Rotor was meggered at 500 volts with a ten minute reading of 30.4 Mohms, a PI of 1.33 and a D.A. of 1.04.
- 2009 Rotor impedance at 4.388 ohms and capacitance at 0.281 microfarads.
- 2010 Plant Interview Rotor Field Winding Rotor has not been rewound. Cracked flex link in pole to pole crossover identified during Unit 1 rotor rewind, follow up on other units. Copper turns are ventilated with holes on units 3 and 4. No flux probe is installed. Estimated # Starts to Present:292 Future cycling 25/ year, 30-40 for plant maybe weekend shutdowns. Estimated Total Operating Hours to 2009: 201485

Preliminary Causes:

- Rotor field winding, like the stator winding has had a remarkable maintenance program effort by the plant and NSP engineering, having testing done each and every year. Test results of impedance and capacitance do show some fluctuation in values and some variability in units. TGA recommends all data to be summarized and trended on a standard test form. Many of these tests are just hand written on a piece of paper, leading to some variance in units. Generator rotor winding issues are typically shorted turn and electrical ground related items that are often caused by: Contamination, Thermal aging and wear of the insulation, Motorizing of the unit (typically damper winding circuit issues). Note that cycling the unit can cause slot cell migration which leads to grounding.
- Pole to pole crossovers and J-strap failures are also common failure modes for field windings. These are typically governed by start/stop cycles (i.e., low cycle fatigue). Lingan 4 has an estimated 291 starts, well below the 421 starts on Lingan 1 with the cracked pole crossover. Lingan 1 field rewound in 2010 had 421 identified start/stop cycles and was discovered to have a pole crossover with about ½ the flexible laminations cracked and failed in fatigue. In addition, Lingan 1 had a field ground prior to the rewind. With four identical units, and units 1 and 2 older with more starts and service hours, events and experiences from these units should be able to be fully leveraged to prevent in-service problems on units 3 and 4. A rotor flux probe installed on all four units is a strong recommendation and can provide valuable information related to any deterioration of the rotor turn insulation.
- Radial stalks (leads)(terminal studs) were reported as not being replaced in 1996 nor in 2008. If they have not been replaced they should be at the next major. Toshiba recommends replacing them every four years.

2016 ACE SBA IR-21 Attachment 1 Page 7 of 10

Lingan Unit 4 Problem Area Worksheet

TG Advisers, Inc. (50) Problem Area Worksheets

ISSUE #: ____GEN5____ Continued from Previous Page

Outage Assessment Plan:

- Perform an Insulation Resistance (megger) test at 500 Volts DC and check the Polarization Index. An IR value of at least 20 megohms and a PI of at least 1.5 are desirable.
- Check rotor field winding impedance and compare to previous historical test values. A significant change in impedance from previous values, when corrected for varying temperatures, could be an indication of a brazed joint failure.
- Check for shorted turns with a pole balance test (also called a pole drop test) if vibration is a concern.
- Verify that any field ground alarms are working properly.
- Inspect pole crossover and field winding underneath the retaining ring at next major outage.
- Perform a pressure test on the radial lead (terminal stud) seals. Replace if needed.
- Install a flux probe to monitor shorted turns on-line.
- At the next end bells off opportunity, plan to inspect the pole crossover with borescope.

Action Items:

- Verify that the pole crossover can be viewed by borescope under the retaining ring with the rotor still installed in the stator.
- Look for a short outage window prior to 2018 (planned next major) to inspect the pole crossover. Use a borescope to inspect underneath the end turns of the winding. Look for signs of pole crossover fatigue cracking, migrated turn insulation, arc damage, loose blocking, etc. If the crossover cannot be viewed directly and inspected for cracks, if the borescope can look under the winding at least verification that no arcing or burning (as evidenced by discoloration) can be done.
- Verify that any field ground alarms are working properly.
- Confirm stock of replacement radial lead seals.

Investigators: Willard Cameron *Date:* June, 2011

2016 ACE SBA IR-21 Attachment 1 Page 8 of 10

Lingan Unit 4 Problem Area Worksheet

TG Advisers, Inc. (53) Problem Area Worksheets

ISSUE #: ____GEN7____ AVAILABILITY FACTOR: ____12___

Problem Area:

The **Generator Rotor Retaining Rings** are very highly stressed components. Retaining Rings can fail from stress corrosion cracking, fatigue cracking, loss of fit, vibration related issues, hydrogen embrittlement, or arc damage leading to premature cracking.

Background and Description:

• Retaining rings support the rotor copper end turn windings during operation. The weight of the copper, being thrown radially outward, imposes severe hoop stresses in the rings. Combined with this stress, the rings can be susceptible to certain kinds of corrosion, fatigue initiated cracking, or hydrogen embrittlement.

1996 - Remove and inspect rotor retaining rings (at Parsons shop). Rotor insulation tests done. This summary documents the rotor end cap (retaining ring) inspection performed by Parsons in 1996, at its St. Catharine's facility. The retaining rings were removed so that an NDE could be carried out to determine if indications or aqueous stress corrosion were present. The end caps were found with very few indications and were found acceptable to return to service. A small number of areas on the surface of the end caps were examined metallographically. No signs of inclusions or stress corrosion cracking were noted. Recommendations: The end caps should be re-inspected after eight years of operation, after a maloperation (i.e. unbalance due to missynchronisation), or after operating in a wet environment. The humidity inside the generator casing should be maintained at approximately 0°C and should not be allowed to exceed +13°C to -20°C. Inspection Details: The rotor transport box was supplied from St. Catharine's and sent to Lingan for transport of the rotor back to the Parsons' facility in St. Catharine's. A Field Service Supervisor was sent to Lingan P.S. to witness the loading of the rotor in the box. The box also contained an impact recorder to record any serious bumps the rotor may have had during transportation. Receipt Inspection – The rotor was visually inspected and electrically checked. There was no evidence of any adverse affects. Detailed inspection report not included in this summary. End Cap Removal – The centralizing ring was packed with dry ice one hour prior to starting the heating process. The induction coils were placed at the nose of the exciter end cap, the cap was heated for approximately one hour to a temperature of 285°C, at which point the snap rings were closed and the cap pushed off the shrink using hydraulic jacks. The induction pipes were transferred to the back of the end cap and a temperature of 220°C recorded, at which point the cap was jacked off the centralizing ring. The same format was repeated for the removal of the turbine end cap although the nose temperature of the cap only attained 260°C at the time of removal. Polishing of End Caps – An attempt was made to remove the varnish utilizing aluminum oxide abrasive cloth on the vertical boring machine. This was partially successful, but it was decided to use an approved paint remover which Parsons utilize on our own end caps. After removing the paint, the caps

2016 ACE SBA IR-21 Attachment 1 Page 9 of 10

Lingan Unit 4 Problem Area Worksheet

TG Advisers, Inc. (54) Problem Area Worksheets

ISSUE #: ____GEN7____ Continued from Previous Page

Background and Description (continued):

1996 (cont'd) - were thoroughly washed down with an electrical cleaner. The caps were polished on a V.T.B. using the aluminum oxide cloth. End Cap NDE - Parsons normal method of NDE on end caps, using liquid fluorescent dye penetrant, was carried out and the results are documented on Hodgson's Inspection Report. Ultrasonic testing of the end caps was also attempted, but this proved to be an inconclusive method of testing. A Metallographic Examination of the retaining rings was also carried out and the test results are given in the attached Galt Testing Laboratories Ltd. Report. Refurbishment -Some balance ring packings were broken and others cracked. A full set of replacement balance ring packings were manufactured and installed. The nomex portions of the end winding insulation cylinders were creased and torn. The torn Nomex was separated from the glass portions and new nomex was fitted. Reassembly - Bore gauges were used to check the shrink fits on the nose and rear portions of the end caps. The caps were heated for (4) hours, prior to assembly. No problems were encountered during assembly. After cooling, the cap surfaces were polished and a white heat resistant epoxy enamel was paint applied to protect the end cap surfaces. Standard End Cap Clearance – No issues noted. UT per procedure CL –MG07AA. No defect indications were found. PT per Parsons procedure NDT 42. No unacceptable defects were noted. Six replications were taken from various locations on the E.E end cap. The locations examined were free from stress corrosion cracking and there was no evidence of massive non-metallic inclusions or dense inclusion clusters. Retaining rings inspected by Ultrasonic and Liquid Penetrant. This examination was carried out at Parsons St. Catharine's Plant from May 28 - 31, 1996. Penetrant test - No Unacceptable Defects were noted. Very minor, very well scattered pin-point indications were noted on the shrink face and outboard vertical face of the E.E. Retaining Ring. Examination of an end cap from the exciter end of the Lingan Unit 4 generator was conducted on-site at

Parsons Turbine Canada Ltd. in St. Catharine's on the 30th day of May 1996. Six locations were ground and polished then etched in a 10% nital solution (10% nitric acid in methanol) for metallographic examination and replication. Microscopic examination took place on-site and analysis of the replicas occurred at Galt Testing Laboratories in

Cambridge. Test Results – there were 6 identified areas that were polished, ground and evaluated. No stress corrosion cracking was observed in any area. The microstructure is noted to be austenitic. Photomicrograph of location #4 shows a typical microstructure of twinned austenite grains. As in the five other locations, there was no evidence of stress corrosion cracking. Non-metallic inclusions were widely dispersed. Conclusion -

The locations examined on the end cap were free from stress corrosion cracking. There was no evidence of massive non-metallic inclusion or dense inclusion clusters. Some rust on the rotor was noted. Past hydrogen coolers leaks reported.

2008 - Retaining rings had PT and UT inspection by Reinhard and Assoc. Specific results were not available for review.

2016 ACE SBA IR-21 Attachment 1 Page 10 of 10

Lingan Unit 4 Problem Area Worksheet

TG Advisers, Inc. (55) Problem Area Worksheets

ISSUE #: ____GEN7____ Continued from Previous Page

Background and Description (continued):

2010 - Plant Interview - Generator Retaining Rings – rings are non-magnetic 18.5 material. PT inspections reported to be done in past. Rings reported to not been off rotor in past.

Preliminary Causes:

- Rings are known to be 18Mn5Cr material, proven to be susceptible to stress corrosion cracking in the presence of moisture and other corrodants. In 1996, six indications in the ring were ground out. These were determined not be stress corrosion cracking. Retaining rings in 2008 were inspected by UT and PT but the report and the results were not available for review by TGA.. In 1996, "rust" was observed when the rotor was at the Parson's facility. Rust is evidence of moisture.
- A "ring-on" inspection has limitations in its ability to detect stress corrosion cracking on the inner diameter shrink fit areas of the ring. As Kilpatrick states, there have been "cases found where the inside of the ring has been coated with oil, and sound was absorbed, and return reflections from cracks could not be expected." This same paper, as well as other papers indicate that cracks as little as 0.005 inches in length or depth can initiate the start of corrosion cracking that can lead to ring failure. It is very difficult for UT from the OD with the ring installed to detect crack indications to this small level, especially around the more complicated shrink fit geometry. Yet even at this size, SCC is a concern with this material.

Outage Assessment Plan:

• At next rotor out outage, replace rings with new 18.18 material that is resistant to stress corrosion cracking.

Action Items:

- New 18.18 rings have long lead time for procurement if not in stock. Procure early and reserve if not already done so.
- Maintain high level of hydrogen purity.
- Ensure hydrogen dryers are properly working and desiccant is "recharging."
- Unmachined spare 18.18 rings are in NSPI stock at Trenton 6. Investigate suitability of these spares across the NSPI fleet. Alternatively, investigate contingency plan for commercial swap with vendors, contractors or other owners.

Investigators: Bill Smalls, Robert MacNeil *Date:* June, 2011

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-2	2:
2		
3	For CI# 4317	0, please describe NS Power's overall AVR program.
4		
5	Response IR-2	22:
6		
7	Recognizing t	hat AVRs have a finite life (less than the typical planned life of a power plant) and
8	that the comp	onents of the installed AVRs were becoming obsolete, NS Power embarked on a
9	planned AVR	replacement program. This program has seen the replacement of many of the
10	fleet's AVRs	in a controlled fashion, integrated into appropriate outages to optimize outage time.
11		
12	The replacement	ent program is outlined below:
13		
14	Replacements	previously conducted:
15		
16	•	Tufts Cove G2
17	٠	Tufts Cove G3
18	•	Pt. Aconi G1
19	•	Lingan G3
20	•	Pt. Tupper G2
21	٠	Burnside G1
22	•	Burnside G2
23	•	Wreck Cove G1
24	•	Wreck Cove G2
25	•	Trenton G5
26	•	Victoria Junction 1
27	•	Victoria Junction 2
28	•	Tusket
29		

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	2016 Planned	l Replacements
2		
3	•	Lingan G4
4		
5	2017 Replace	ements
6		
7	•	Trenton G6
8	•	Burnside 3
9		
10	Other Units	
11		
12	•	Lingan 1 and Lingan 2: utilizing components made available from LIN3/4
13		retrofits. Will monitor and consider against planned unit utilization.
14		
15	•	Tufts Cove 1: Will monitor and consider against planned unit utilization.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Requ	est IR-23:
2		
3	For C	CI# 47657:
4		
5	(a)	Please explain the difference in forecasted amount between this project and
6		CI#40363, LIN3 High Voltage Bushings Refurbishment in 2015.
7		
8	(b)	Please provide documentation for the OEM recommendation of refurbishment of
9		the generator bushings.
10		
11	Respo	onse IR-23:
12		
13	(a)	The forecasted amount for CI 47657 is higher than CI 40363 primarily due to the foreign
14		currency exchange rate with the US dollar. Material and installation contract costs are
15		priced/paid in US dollars and make up the majority cost of the project. When the budget
16		for CI 40363 was developed, the Canadian Dollar was closer to par with the US dollar.
17		The actual cost from CI 40363 was used to create the forecast for CI 47657 with the
18		addition of the exchange rate.
19		
20	(b)	Please refer to Attachment 1.

Major Generator Outage Recommendation

s	Inspection Item		Necessary Condition	Interval for Preventive Maintenance	Reference Document	Purpose	Necessary Days
pr	1. General Inspection	 Checking the generator field coil ends Checking the rotor connection lead insulation Checking the field coils and joints for insulation Checking the field coil cooling ventilation holes(Direct Hydrogen-Cooled Type) 	Rotor Withdraw	Every Major Outage	Item 1)–4) Inspection of Generator Field Coil CL-MG02A(RE–23)	The generator rotor runs at high speed. The field coils and their insulations are subject to the effect of centrifugal force generated by rotation. The rotor coil is very importan parts, therefore, periodical maintenance is necessary.	t
	2. Non Ddestructive Test (First Step)	 Magnetic Particle Test(MT) and Ultrasonic Test(UT) of shaft journal UT of rotor wedge UT and dye penetrant test(PT) from the external circumferences of retaining ring UT of shaft teeth MT or PT of lead wedges PT of fan blade MT or PT of Major bolts 	Rotor Withdraw	Every Major Outage	Item 1)-7) Non-Destructive Examination of Turbine Generator Rotor TTIL- KC194501	The shaft, retaining rings, rotor wedges and other major components used in generator rotor are subject to frequent start and stops, and are sometime appeared the fatigue cracks on rotor wedges, fretting fatigue cracks on the slot teeth, and stress corrosion cracks on the retaining rings. It is increasingly important to maintain the high reliability of generator in recent years that these defects are detected and evaluated in detail during the outage.	
	3. Non Destructive Tes (Second Step)	t **1) MT and UT of shaft center bore 2) MT and UT of shaft journal 3) PT, MT and UT of rotor wedge 4) PT and UT of retaining ring 5) PT and UT of coupling 6) MT of shaft teeth 7) MT of fan bosses 8) MT or PT of lead wedge 9) PT of fan blade 10)MT or PT of majour bolts	Rotor Withdraw Remove retaining ring Remove rotor wedge After re-assemble, high speed balance is required. These inspections need to be carried out in the factory.	More than 100,000 hours or 15 years operation	Item 1)–10) Non–Destructive Examination of Turbine Generator Rotor TTIL– KC194501	Same purpose of "2.Non Destructive Test (First Step)". Second step needs high speed balance of rotor. Therefore, the rotor needs to send to factory which has a high speed balance facilities.	
	4. Others	 **1) Inspection of Copper Particle of Generator Rotor Windings **2) Replacement of Retaining Ring to 18Mn-18Cr (In case of 18Mn-5Cr) **3) Change the Distance Block Type to Pop Rivets Type 	Rotor Withdraw After these work, high speed balance is required.	Item 1) Total turning time:more than 10000 hours Item 2) As soon as possible Item 3) More than 100,000 hours or 15 years operation	Item 1) Countermeasure for Copper Particles of Generator Rotor Winding TTIL-KC195501 Item 2) Replacement of Non-Magnetic Generator Retaining Rings TTIL- KC187001E		
	4. Electrical Test	 Winding Insulation Resistance AC Impedance Pole Balance Recurrent Surge Oscillation Air Gap Flux Probe Bore Pressure Test 	See Reference Document.	See Reference Document.	Recommended Electrical Test LST-GEI- XXX-0046	See Reference Document.	

2016 ACE SBA IR-23 Attachment 1 Page 1 of 3

LST-GEI-XXXX-0007 Rev.2

Major Generator Outage Recommendation

1	Inspection Item		Necessary Condition	Interval for Preventive Maintenance	Reference Document – should be submitted to customer	Purpose	Necessa Day
	1. General Inspection	 Checking Stator Wedges for Tightness Checking Spacers in Core Slot for Slipout Stator Core Check Checking and Replacing Various Kinds of Tightening Hardware for Stator Coil Ends Checking Stator Coil Ends for Sausage Wear Checking Stator Coil Ends if They are not Loose between Themselves Checking Spacer Blocks between Stator Coil Phase Connection Rings Checking Sliding Mechanism of Improved Stator Winding Support 	Rotor Withdraw	Every Major Outage	Item 1)-8) For Water Cooled Generator Inspection of Water Cooling Stator Coil MG02B(SE-23A) For H2 Gas Cooled Generator Inspection of Generator Stator Winding Insulation CL-MG02A(SE-21)	Generator long time operation and vibration occur the looseness of stator coil. It is important to maintain the high reliability of generator that the looseness are detected during the outage.	
1	2. Diagnostic Test of Generator Stator Winding (Off-Line Monitoring)	1) Polarization Index Test 2) AC leakage current test 3) Dielectric loss angle (tan δ) Test 4) Corona (Partial discharge) Test	Rotor Withdraw IPB Disconnect Water Removing (Water Cooled Stator Coil Type)	First Time: More than 100,000 hours or 15 years operation From Second Times: 4–6 years	The Diagnostic Test of Generator Stator Winding (Off-Line Monitoring) SE-26	These Non Destructive Tests of stator coil insulation are more effective for deterioration about stator bar insulation residual life than high potential test.	
	3. Leak Test for Water Cooled Stator Coil	1) In-Leak Test 2) Pressure Decay Test 3) Vacuum Decay Test 4) Tracer Gas Test	Stator Cooling Water Removing 4)Bearing Bracket Off or Rotor Withdraw	First Time: More than 10 years operation From Second Times: 2 years	Leak Test for Stator Winding of Water Cooled Turbine Generator TTIL- KC295501-B	We had experienced the water leakage from stator winding just before filling H2 gas in the generator. As a result, unit is prolonged starting the commercial operation. To prevent such a prolonging the generator overhaul, it is necessary to conduct the leak tests of stator water cooling system and to confirm the leakage of stator winding just after unit shut down.	5
-	4. Capacitance Mapping Test of Water Cooled Stator Coil	Capacitance Mapping Test	IPB disconnect Rotor withdraw	First Time: More than 10 years operation From Second Times: 2 years	Capacitance mapping test (by manual) LTR-GEI-XXX-0004	If a leakage occurs at the brazed joint portion between coil strand and clip, it has a possibility that water shall penetrate into the ground-wall insulation. This shall cause the reduction of the dielectric strength on the ground-wall insulation. The purpose of this test is to detect the existing of water in the ground-wall insulation at an early stage for preventing the equipment shutdown.	
	*∗ 5. HV Bushing ⁾ (Porcelain Type))	 1) Visual inspection 2) HVB Overhaul 2-1) Gasket replacement of bushing 2-2) Gasket replacement of Terminal Board 3) HVB Replacement 	IPB disconnect HVB Disconnect	Item 1) Every Major Outage Item 2) 8 years Operation Item 3) 16–24 years Operation		Hydrogen leakage have been detected from gasket part of some high voltage bushing franges which was operated more than eight years operation. It is important to do overhaul or replace the bushing before hydrogen leakage occur.	
	6. Sealing Gland Packing	1) Re-tighten the bolt 2) Replacement of the packing		Item 1) Every Outage Item 2) 15 years operation	Inspection of Hydrogen Sealing Gland Packing CL-MG02A (SE-22)	The purpose of this letter is to describe a recommendation on the inspection and replacement that should be made to the hydrogen sealing gland packing for drawing out the leads of internal temperature measuring element from the generator stator frame during its scheduled outage period.	
	7. Stand off Insulator	Visual Inspection		Every Major Outage	For Water Cooled Generator Inspection of Generator Support Insulator CL-MG02A(SE-25)	Recent checks on the insides of large-capacity water cooled generators revealed some of the generators having wear dust on the support insulators, or their insulator bolts loose or falling.	
	8. Electrical Test	 RTD Element Resistance RTD Ground Insulation Thermocouple Insulation Resistance Winding Insulation Resistance Insulation Resistance(aka Megger) Over Potential/Hipot Wedge Tightness Map Magnetic Scalar Potential(EL CID) Dynamic Freq. Response 	See Reference Document.	See Reference Document.	Recommended Electrical Test LST-GEI- XXX-0046	See Reference Document.	

2016 ACE SBA IR-23 Attachment 1 Page 2 of 3

LST-GEI-XXXX-0007 Rev.2

Major Generator Outage Recommendation

Gen Parts	Inspection Item		Necessary Condition	Interval for Preventive Maintenance	Reference Document - should be submitted to customer	Purpose	Necessary Day
	1. General Inspection for Other Parts Except for Rotor, Stator and Excitation Parts	 Bearing Metal Inspection Visual inspection and penetrant test Seal Casing Inspection Visual inspection and penetrant test of spring 3) Seal Ring Inspection Visual inspection and penetrant test 4) Cooler Inspection 4-1) Cleaning of cooling tube, water box, cooling fin 4-2) Fin slant check 4-3) Gasket replacement 4-4) Water box inner painting 4-5) Sacrificial anode replacement 4-6) Check and repair of leaking cooling tube 4-7) Internal inspection by bore scope 4-8) Thickness inspection by eddy current test 	Item 1)–3) Bearing cap disassemble Item 4) Cooler remove	Item 1) More than 400 times start up or Every Major Outage Item 2)-4) Every Major Outage	Item 1) Inspection of Bearing Metal 4GEI00018 Item 4) Inspection of Cooler 4GEI00017 Item 4) Instruction Manual for Hydrogen Gas Cooler SLE10085 Item 4) Instruction Manual for Air Cooler SLE10089		
	2. Leakage Check of Hydrogen Gas	H2 Gas Leak Test Assumed Leakage Point 1) HV Bushing 2) Hydrogen Sealing Gland Packing 3) Seal Casing Attaching Face 4) Interior Face of Seal Ring 5) Joint and Attaching Face of the Outer End Shield 6) H2 Gas Cooler Attaching Portion 7) Rotor Terminal Lead Portion 8) Piping		Every Six to Twelve Monthes	1		
	3. Inspection for Excitation Parts	 AC Exciter Inspection 1) AD Exciter Inspection of rotary rectifier equipment 1-2) Inspection for blown fuse 1-3) Inspection for short circuited rectifier 1-4) Inspection for resitor 1-5) Inspection of leak current for rectifier 1-6) Inspection of leak current for rectifier 1-7) Degradation inspection of capacity 1-7) Degradation inspection of capacitor 2) Static Excitation Inspection 2-1) Visual inspection of collector rings, brushes and brush holders 2-2) Examination of each brush holder for wear 2-3) Replacement of any worn constant- pressure springs 2-4) Tightness check of clamps and bolts 2-6) Grinding of collector rings (if necessary) 2-7) Filter inspection and recycling 2-8) Filter mat replacement 		Item 1) Every Major Outage Item 2–1) Daily Item 2–2)–2–8) Every Major Outage	Item 1) Inspection and Maintenance of Brushless Exciter and PMG EKC002644 Item 2-1)-2-6) Inspection and Maintenance of Collector Rings, Brushes and Brush Holder EKC002316 Item 2-7)-2-8) Maintenance of Air Filter EKC002317 Note) These manuals are for sample. Doc. No. of actual manual for each plant is shown in "North America Generator Drawing and Instruction Manual List" LST GEI-XXX-0014 for INTERNAL (ReGENco/TIC/TSB) USE ONLY.		

2016 ACE SBA IR-23 Attachment 1 Page 3 of 3

LST-GEI-XXXX-0007 Rev.2

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

CONFIDENTIAL (Attachment Only)

1	Reque	est IR-24:
2		
3	For C	I# 46298:
4		
5	(a)	Was an EAM analysis conducted for this project? If not, why not?
6		
7	(b)	Please describe the overall "general dam safety program" and the timeline of any
8		projects that will be implemented in this program.
9		
10	(c)	Please provide the 2009 Dam Safety Review that concluded the dam requires
11		refurbishment related to concrete degradation and stability concerns with ice
12		loading.
13		
14	Respo	nse IR-24:
15		
16	(a)	As hydro dam safety projects are safety-related capital projects, no EAM was completed.
17		
18	(b)	NS Power's Dam Safety Management Program follows the Dam Safety Guidelines
19		issued by the Canadian Dam Association (CDA). The main components of the program
20		include the following:
21		
22		Dam Safety Reviews and Flood Studies
23		Emergency Preparedness Plans
24		Operation, Maintenance & Surveillance Manuals
25		Semi-Annual Dam Inspections
26		
27		Dam Safety Reviews (DSR) and Flood Studies are undertaken for each of the 17 hydro
28		systems on a 7 year cycle. Typically, two to three DSRs are completed each year and a
29		full set of DSRs, for all 17 hydro systems, are also completed within a seven year cycle.
30		

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

CONFIDENTIAL (Attachment Only)

1	Emergency Preparedness Plans are updated each year for each of the hydro systems. The
2	updates typically include; changes/refurbishments to the hydro system, contact personnel
3	changes, etc.
4	
5	NS Power operations personnel conduct semi-annual dam safety inspection in the spring
6	and fall of each year. The goal of these inspections is to identify and note any changes to
7	the water-retaining structures and to identify deficiencies that will require repairs or
8	preventative maintenance. Photographs are also taken during each inspection for
9	documentation purposes.
10	
11	NS Power also has an established inventory database, which describes all of the water-
12	retaining structures and is used as part of the dam safety prioritization worksheet that
13	categorizes the condition of the structures based on the Dam Safety Reviews. The
14	prioritization worksheet is used as a planning tool to prioritize the structures in terms of
15	their overall condition (stability, freeboard, general condition, etc.) and the results are
16	used to develop the rehabilitation schedule for the structures.
17	
18	Dam safety related refurbishment projects are prioritized and selected based on the results
19	of the dam safety management program. Each year, the dam safety prioritization
20	worksheet and supporting documentation is assessed to determine which refurbishment
21	projects will be advanced to preliminary engineering assessment and design. Once a
22	project is selected, the preliminary engineering is typically completed over a one to two
23	year period depending on the size and complexity of the project. Large, more complex
24	projects may take longer to complete the preliminary engineering.
25	

26 (c) Please refer to Confidential Attachment 1.

SBA IR-24 Attachment 1 has been removed due to confidentiality.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-25:
2	
3	Please describe NS Power's dam safety project prioritization. Include methodology, factors
4	taken into consideration, and list of safety projects by prioritization and associated cost
5	estimates.
6	
7	Response IR-25:
8	
9	NS Power's dam safety prioritization worksheet is utilized as a planning tool for assessing and
10	prioritizing deficiencies associated with the water-retaining structures (dams, spillways, etc.).
11	The information utilized in the prioritization worksheet is taken from the Dam Safety Reviews
12	(DSR), which are completed for each of the 17 hydro systems. DSRs are complete on a seven
13	year cycle for hydro system and a full set of DSRs, for all 17 hydro systems, are also completed
14	within a seven year cycle.
15	
16	The prioritization worksheet assesses the structures based on four assessment categories:
17	
18	(1) Design Adequacy Assessment for a Sunny Day Condition;
19	(2) Design Adequacy Assessment for an Earthquake Condition;
20	(3) Design Adequacy Assessment for a Flood Condition; and
21	(4) General Physical Condition Assessment.
22	
23	For each category, concern ratings are assigned to each of the items assessed. The maximum of
24	the concern ratings are then assigned as the overall concern rating for the specific structures.
25	The overall concern rating is then multiplied by a scaling factor to determine the Vulnerability
26	Index for each structure.
27	
28	For a Sunny Day Condition, the reservoir level would be at the Full Supply Level (FSL) or
29	Normal Operating Level. The following items are reviewed as part of this assessment:
30	overtopping of the crest, overtopping of the core, stability of the concrete or timber structures for

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

- 1 No Ice and Ice loading conditions, the downstream slope stability of the embankment structures,
- 2 and the upstream slope stability based on a rapid drawdown scenario.
- 3

For the Earthquake Condition, the reservoir level would remain at the FSL and seismic coefficients would be applied to the analyses. The following items are reviewed as part of this assessment: the stability of the concrete or timber structures under seismic loads, and the upstream and downstream slope stability of the embankment structures under seismic loads.

8

9 For the Flood Condition, the reservoir level would be at the Inflow Design Flood (IDF) level, 10 which is the design flood level based on the dam classification of the structure. The following 11 items are reviewed as part of this assessment: overtopping of the crest, overtopping of the core, 12 and the stability of the concrete or timber structures under flood loading conditions.

13

14 For the Physical Condition Assessment, the physical conditions of the structures are assessed for 15 the embankment, concrete, and timber structures. The items assessed as part of the embankment 16 structures include: the crest, upstream slope, downstream slope, instrumentation/monitoring, and 17 The items assessed as part of the concrete structures include: conduits. crest/upstream face/downstream face, piers/abutments, gates/stoplogs, apron/foundation, and channel. The 18 19 items assessed as part of the timber structures include: crest/decking, upstream and downstream 20 faces, abutments, foundation, and outlet channel.

21

As part of the requirements of the flood studies, risk values associated with downstream flood
events are determined based on the design flood scenarios. These values are assessed for both
the sunny day failure and flood failure scenarios.

25

The Vulnerability Index and risk value parameters are used to determine the Risk and Rank scores for each of the four assessment categories. The risk value parameters are used to determine the Life Safety score. The Risk scores are then determined by multiplying the Vulnerability Index by the Life Score for three risk categories: Life Safety Risk, Environmental and Cultural Risk, and Infrastructure and Economic Risk. The sum of the Risk scores, for the

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

four assessment categories, is used to determine the overall risk number of the structure. The
overall risk numbers are then sorted in descending order to prioritize the structures. The higher
the overall risk number, the higher the rank number.

4

5 The prioritization worksheet is a working document and will be updated following the 6 completion of DSRs. The overall prioritization of the structures will change over time based on 7 structures being refurbished, changes to the hydro systems, changes to the CDA Guidelines, etc. 8 The structures are listed, by priority, in the prioritization worksheet and projects are selected 9 based on that information. However, there are no costs associated with each structure/potential 10 project at this time. Potential Preliminary Engineering (PE) projects are identified using the 11 prioritization worksheet and the costs estimates would be completed as part of the PE projects.

For a list of safety projects by prioritization and associated cost estimates, please refer toAttachment 1.

Capital Dam Safety Projects - Prioritization List (2016 to 2018)

Structures		Deficiencies	Estimated Construction Costs	Potentia
2016 Construction Projects				
Five Mile Lake Dam / Mack Lake Dam Refurbishment	7 / 17	Stability requirements not met. Five Mile Lake Dam in poor physical condition.	\$2M	Construct new spillway and issues with existing dam by
WRC Dam D-4 Refurbishment	22	Freeboard and downstream slope stability requirement not met.	\$1.5M	Raise the crest and construc
Nictaux Powerhouse Dam Reconstruction	Not Noted*	Stability requirements not met. Concrete in poor physical condition.	\$1.7M	Reconstruct a concrete dam of the existing structure.
Hollow Bridge Canal Dyke Refurbishment	89	Embankment stability requirements not met. Spillway structure in poor physical condition, stability requirements not met.	\$4.3M	Construct toe berms along t embankment sections, cons spillway channel, construct a canal, and install a new gate
2017 Construction Projects	•			
Marshall Falls Dam Refurbishment	10	Embankment stability requirements not met. Spillway structure in poor physical condition, stability requirements not met.	\$3.5M	Refurbish the embankment sluiceway structure.
Scragg Lake Dam Refurbishment	14	Embankment stability requirements not met. Spillway structure in poor physical condition, stability requirements not met.	\$0.75M	Reconstruct the spillway/slu embankment sections.
WRC Dam D-9 Refurbishment	21	Freeboard and downstream slope stability requirement not met.	\$1.5M	Raise the crest and address
Tusket Main Dam/Canal Embankment/Powerhoue Dam Refurbishment	45/30/31	Freeboard and stability requirements not met. Operational deficiencies with the tainter gates in winter conditions.	\$7.7M	Construct a new concrete da downstream of the dam, an
Lequille Headpond Dams & Spillways Refurbishment	43	Freeboard requirements not met for all water-retaining structures.	\$3.5M	Increase the discharge capa embankment dams, and ref
Ruth Falls Dam Refurbishment	56	Freeboard and stability requirements not met. Operational deficiencies exist with the stoplog structure.	\$4M	Refurbish the concrete dam
2018 Construction Projects	1	1	1	
Sissiboo Falls Dam	29 66	Rubber dam requires replacement, possible concrete work required.	\$2.5M	Replacement of the rubber of
Gulch Spillway (Possible)	00	Stability requirements not met. Concrete in poor physical condition.	\$2.5M	Refurbishment of the concre
WRC Dams D-5, D-6-1 and D-6-2	148/76/148	Freeboard and downstream slope stability requirements not met. Major seepage issues and high pore pressures at Dam D-6-1.	\$4M (combined)	Raising of the dam crests an Also, addressing the high se

* - The Nictaux Powerhouse Dam was not previously noted in the dam safety prioritization worksheet and was included following the results of the 2012 Dam Safety Review of the Nictaux Hydro System.

Potential Rehabilitation Activities
vay and sluice gate structures and address stability dam by placing rockfill on the downstream side.
construct a toe berm at the downstream toe. ete dam with sluice gate immediately downstream
ure.
along the downstream toe areas of the
ns, construct a new spillway structure, extend the nstruct a new intake gate at the entrance to the ew gate in the intake structure.
nkment dams and construct a new spillway/
way/sluiceway structure and upgrade the
ns. address slope stability concerns.
crete dam structure, construct a new bridge dam, and refurbish the embankment dams.
ge capacity of the spillway structure, raise the and refurbish or replace the canal intake structure.
ete dam and embankment structures.
rubber dam and possible concrete works. e concrete spillway.
rests and addressing the slope stability concerns. high seepage flows in Dam D-6-1.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

CONFIDENTIAL (Attachment Only)

1	Requ	lest IR-26:
2	1	
3	For (CI# 47397:
4		
5	(a)	Was an EAM analysis conducted for this project? If not, why not?
6		
7	(b)	Please provide the 2010 Dam Safety Review that concluded Dam D-4 did not meet
8		the stability requirements for the steady state seepage condition on the downstream
9		slope and did not meet the Normal or Minimum Freeboard requirements.
10		
11	(c)	When were the new CDA guidelines for minimum freeboard instituted? At what
12		date did Gisborne violate the CDA guidelines?
13		
14	Resp	onse IR-26:
15		
16	(a)	As hydro dam safety projects are safety-related capital projects, no EAM was completed.
17		
18	(b)	Please refer to Confidential Attachment 1.
19		
20	(c)	The latest version of the CDA Guidelines was issued in 2007. The Minimum Freeboard
21		deficiency for the Gisborne Dam D-4 was identified in 2001 as part of a Flood Study
22		Review (Amec, 2001). Consistent with all Dam Safety projects, these are prioritized on
23		an annual basis to determine which Dam Safety projects require completion.

SBA IR-26 Attachment 1 has been removed due to confidentiality.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

CONFIDENTIAL (Attachment Only)

1	Reque	st IR-27:
2		
3	For C	I# 47396:
4		
5	(a)	Was an EAM analysis conducted for this project? If not, why not?
6		
7	(b)	Please provide the 2012 Dam Safety Review that concluded Nictaux Powerhouse
8		Dam was in poor condition with significant concrete deterioration and cracking and
9		did not meet the stability requirements for the usual ice and flood loading
10		conditions.
11		
12	(c)	Why was the Nictaux Powerhouse not classified as part of the 2010 Flood Study?
13		
14	(d)	Please explain and provide any supporting documentation that justifies the Nictaux
15		Powerhouse Dam being classified as "Low" in the 2012 DSR analyses.
16		
17	(e)	Please provide any analysis showing alternatives, such as constructing a smaller
18		concrete dam with rock anchors, considered. Please provide any supporting
19		documentation showing that the alternatives considered are less desirable.
20		
21	Respon	nse IR-27:
22		
23	(a)	As hydro dam safety projects are safety-related capital projects, no EAM was completed.
24		
25	(b)	Please refer to Confidential Attachment 1.
26		
27	(c)	The dam was not classified as part of the 2010 Flood Study as the dam is a low height
28		structure with the resulting downstream impacts deemed to be low in the event of a dam
29		breach.
30		

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

CONFIDENTIAL (Attachment Only)

Low classification for the analysis, the loads applied on the structure would be the lowest recommended design loads. If the structure passed the stability requirements with the lowest recommended design loads, then the dam classification would have been increased until the design loads were not met. In the case of the Powerhouse Dam, the stability criteria were not met for the lowest recommended design loads thus increasing the design loads was not required. In addition, the dam is a low height structure and downstream impacts would be limited in the event of a dam breach.	1	(d)	The dam was conservatively classified as Low in the 2012 DSR analysis. In assigning a
 lowest recommended design loads, then the dam classification would have been increased until the design loads were not met. In the case of the Powerhouse Dam, the stability criteria were not met for the lowest recommended design loads thus increasing the design loads was not required. In addition, the dam is a low height structure and downstream 	2		Low classification for the analysis, the loads applied on the structure would be the lowest
 until the design loads were not met. In the case of the Powerhouse Dam, the stability criteria were not met for the lowest recommended design loads thus increasing the design loads was not required. In addition, the dam is a low height structure and downstream 	3		recommended design loads. If the structure passed the stability requirements with the
 6 criteria were not met for the lowest recommended design loads thus increasing the design 7 loads was not required. In addition, the dam is a low height structure and downstream 	4		lowest recommended design loads, then the dam classification would have been increased
7 loads was not required. In addition, the dam is a low height structure and downstream	5		until the design loads were not met. In the case of the Powerhouse Dam, the stability
	6		criteria were not met for the lowest recommended design loads thus increasing the design
8 impacts would be limited in the event of a dam breach.	7		loads was not required. In addition, the dam is a low height structure and downstream
-	8		impacts would be limited in the event of a dam breach.

9

10 (e) The design alternative to have a smaller concrete dam with rock anchors was cost 11 comparable to the selected simple concrete gravity dam option. The simple concrete 12 gravity dam option would be less complicated to construct, have a safer installation 13 process, and would be less likely to run into field issues. The use of rock anchors would 14 inherently include design life and long-term performance concerns. The concrete gravity 15 dam option without rock anchors eliminates the design life and performance concerns.

SBA IR-27 Attachment 1 has been removed due to confidentiality.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-28:
2	
3	For CI#48018, was an EAM analysis conducted for this project? If not, why not?
4	
5	Response IR-28:
6	
7	No, an EAM was not completed for this project. Tuft's Cove Generation Station is now operated
8	more for capacity purposes than for general energy production purposes. This is similar to how
9	projects associated with the gas turbine units are justified. In order to reliably operate the unit,
10	this work must be completed. The alternative would be to invest in additional new generation to
11	replace the generation from Tuft's Cove. This is not considered a viable option at this time due
12	to the high cost of new generation as compared to the cost of continued operation of Tufts Cove
13	Unit #1.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Reque	est IR-29:
2		
3	For C	I# 47611:
4		
5	(a)	Was an EAM analysis conducted for this project? If not, why not?
6		
7	(b)	Please detail the ongoing maintenance costs associated with Pt Tupper Unit 1 since
8		its retirement.
9		
10	(c)	Please provide a summary of all future on-going costs associated with Pt. Tupper
11		Unit 1.
12		
13	Respon	nse IR-29:
14		
15	(a)	No. This project is justified based on safety; therefore, an EAM analysis was not
16		completed for this project.
17		
18	(b)	The ongoing maintenance costs for Unit 1 stack have been inspection and maintenance
19		costs in order to comply with Thermal Maintenance Practice - 03 Stack Inspection.
20		Inspection costs are approximately \$5,000 annually, and repair costs vary year over year,
21		with the most recent cost being the installation of mesh material to mitigate the risk of
22		falling bricks at an approximate cost of \$5,000.
23		
24	(c)	Once the stack is removed in 2016, the only cost anticipated is related to the removal of
25		Galbestos siding.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Reque	est IR-30:
2		
3	For C	I# 47172:
4		
5	(a)	Please provide the 2014 condition assessment report which determined that the
6		runner and wicket gates are experiencing significant cavitation and the rotor
7		requires additional assessment.
8		
9	(b)	What is the long-term operating strategy of Tidewater Unit #1?
10		
11	Respo	nse IR-30:
12		
13	(a)	Please refer to Attachment 1.
14		
15	(b)	Tidewater Unit #1 is a run of river machine that is expected to be operated well into the
16		future. No changes to its operating strategy are expected.

2016 ACE SBA IR-30 Attachment 1 Page 1 of 17

1	NSP-27T	HYDRO UNIT INSPECTION CRITERIA
PLANT: TICE WATER	3101-271	DATE: 14 AVSWIST 2014
A A		
UNIT #:		CREW: <u>G.McLeocl/A.Heimry</u>
		WORK ORDER: 66223
INSPECTION COMPONENT	RATING	
PRE-SHUTDOWN (as exercise before Inspection)		Note: Inspection Criteria is to be used in addition to PM checklists as well as the Overhaul Parts Inspection Checklist
Bearing temperature	+ 7	
Thermal Scan	NIA	NO problems with avertheating.
Excessive leakage (oil, air, water)	3	
Vibration analysis	5	Some miller oil tratage: Not working.
Oil Anəlysis		awaiting testing.
		, ,
OPERATIONAL ISSUES:		
Shutdown		no issues, do not need to close main value.
Hot spots (windings)		Working, just old style.
Probes not working	1	Mortiner, vist of style.
Adequate oil systems/flows		Geoch.
Runner Condition Condition of Runner - Cavitation Excessive <u>Clearance</u> in Runner Seals Blade Cracking	4 1 4	major caurtation on backsole of blodes (top) good Nothing Visible, but possible due to the mayor can tartion.
KAPLAN:		
Check for oil in water		
Check for water in oil	NIA	
FRANCIS:		
Alignment of runner in seals	1	soud.

2016 ACE SBA IR-30 Attachment 1 Page 2 of 17

FIXED/PROPELLER:		
Check for cracks in blades	3	not able to check, not ming visible, but will crack due to major canterbar
		CURRE dur to MOUN Cantabas
		Childe Childe he printight
Throat Ring / Draft Tube Condition		and the face of the
		Unable to evaluate this area.
Cavitation		
Liner Deterioration (filler)		
Cracking	1 /	
Concrete Deterioration		
Separation of liner and concrete	1/	
Condition of anodes	1/	
·		
STAY VANES	-	
Check for cracking	1	good
Check for condition of paint	2	lequires cleaning /painting
		requires creating frammer
PENSTOCK		
Concrete condition (cracking, leaking,	1	Pipeling / buller Rughe
spawling) Condition of drain		Pipeline / botterfly value.
Check condition of screens for water		good
Check for sealing of headgates		Elecened.
		slight leakage
Condition of manhole cover and studs, and ifting attachments	1	OK, replace studs during next overhand
	1	Or juliule stars clusting view overtiling
		· · · · · · · · · · · · · · · · · · ·
SCROLLCASE	-	
Condition of coating	2	needs to be cleaned and remated.
Condition of rivets		Look of Cicuney Unia relation
Check for leaks	- <i>1₁</i> -	look ok,
		NONE

े. ज 2016 ACE SBA IR-30 Attachment 1 Page 3 of 17

HEADCOVER/SEAL CONDITION	1	
Upper & Lower Seal <u>Condition</u> Wear	17	look of according to clearances.
Gate Link Bushing Wear	2	Shaw signs of waar
Eccentric pin and gate link pin wear	15	Show signs of wear
Push Pull Rod Bushing Clearance	13	show signs of wear
Operating Ring Bushing Wear	$\frac{\alpha}{\alpha}$	show signs of wear
Cavitation on Wicket Gates	3	a lot of scale, should be ND Tested for thickness.
Wicket Gate Clearance	Ĩ	OK, difficult to get good charances top poton Consider see
Paint condition	Q	No paint on gates; no paint on Madraier
Water leaks	2	water on headayer, unknown Source.
Packing glands Wicket Gates	12	None adjustitude pricking on Wright gates.
Vacuum valves	1	and.
Condition of deck plates	NIA	Yus no deek plates.
QUADRANT SHAFT:	MA	N/A
Bearings		
pins		
bushings		
Connecting rod for quad/terminal shaft		
TERMINAL SHAFT		
pearings	R	some play
····		

۶ بر 2016 ACE SBA IR-30 Attachment 1 Page 4 of 17

GREASE LINES	a	no remote grease lines.
TURBINE SHAFT	1	
Turbine Water Seal Wear (Carbon, Labyrinth,	2	Perekenzi, OK
Packing) Excessive Run Out	10/	No
Vibration / Bearing	5	
Turbine bearing supply piping	17	Unknum, Vibration Monitars not working
	<u> </u>	Spiping.
· · · · · · · · · · · · · · · · · · ·		
PIPING AND TUBING	·	
Oil Leaks	3	uning oil lasts on brains asts and scalence.
Type of material	ī	milior cil leats on heaving pots and govern. steel / brass / stainkess.
		for the for the second se
ORRA Status/Condition Assessment	2	cooling water flow meters installed, nothing else done for ORRA.
		else done for ORRA.
GENERATOR Static Air Gap (Pilot)	ALIA	
Winding Cleanliness	NA	
Rotor Shaft - Excessive Runout (upper)	<u>oc</u>	dirty
Rotor Shaft - Excessive Runout (lower)		Socol
Rolor Pole Cleanliness	.3	Clipty flaker paint
Collector Ring Wear	1	more wear
Collector Ring Cleanliness	2	dirtu
Vibration	5	Good, but not ubration menuter working.
Excitor Housing Condition	Ī	Carba dust.
Commutator Wear	1	some wear, republish during arerhand.
Temperature probes	l	all working , old style
Braking surface	1	Smooth
Brake pads wear		3.1" of priod left (usable)
EXCITER		Audu dut
	1	dirty, carbon dust
GENERAL		~
Hand rails, deck plating, access ways	1	and '
· · · · · · · · · · · · · · · · · · ·		good '

, ^{, ,}

.

2016 ACE SBA IR-30 Attachment 1 Page 5 of 17

		NSPI	HYDRO UNIT N	ASTER LIST		Date Revised: (02-Dec-2010	
SYSTÉM:	; Hes		: St Margarets Bay	UNIT:	TW1	Revised By:	Robert Lord
				1: GENERATOR:			
Manufactured By:	Can. Gen. Elec.	CFS	Approx. 300	Number of Rotor Poles:	24		
Year:	1921	Horsepower	3460	RPM:	300]	
PMG	3	Stator Weight		Weight:	App. 40,000		
Pilot Exciter	NA	Main Exciler	Yes	Collector Rings	Yes		
# of Brushes		# of Brushes	24	# of Brushes	12 04	1.100 1.100	45/1-4
Brush Dala:	NA	Brush Data	EG6345	Brush Data;	EG6345 🏋	AV BI, AYMI,	AYLI
			SECTION	2; SHAFT DATA			
······	1			Torque Values per			·····
Flange OD:	1	Bolt Diameter / OD:		Flange:			
Length		# of Bolts per Flange:		Coupling:			
Shaft OD:		Bolt Length:		Fitted:			
# of Sections:	2			Tapered:			
Individual Weights:		<u> </u>		OEM:			
Total Weight:							
	NIC (1 Course		3 BEARINGS		TUBILE	4. 8.9.90
Type of Seal:	NE: Packing Teflon	LOWER (SVIUC(UPPER GU		THRUS ID:	1
Type of Oil:	t throug to sold	Type of Oil:	Tresso 68	Type of Oil:	Tresso 68	Type of Oil:	Tresso 68
Quantity of Oil:	······································	Quantity of Oil:		Quantity of Oil:		Quantity of Oil:	
Last Test Date (Oil):		Last Test Date (Oil):		Last Test Date (Oil):	?	Last Test Date (Oil):	?
Cooling Coll (Internal)		Cooling Coil	L	Cooling Coil		Cooling Coil	
or External)	NA	(Internal or External)	NA	(Internal or External)	Internal	(Internal or External)	Internal
# of Colls:	NA	# of Coils:	NA	# of Coils:		. # of Coils:	
Tubing Type:	NA	Tubing Type:	NA	Tubing Type:		Tubing Type:	
Tubing Size:	NA	Tubing Size:	NA	Tubing Size:		Tubing Size:	
Tubing Length:	NA	Tubing Length:	NA	Tubing Length:		Tubing Length:	
ID:	NA	Shaft - OD Diameter:	NA	Shaft - OD Diameter:		Shaft - OD Dlameter:	
OD:	NA					Thrust Block Height:	
Shaft Sleeve:	NA					Thrust Block Weight:	
_	NA					Thrust Block	
Length:						OD Diameter:	
Thislanson	NA	Desident forward Oliver		Desides InvestOf		Spring Bed	
Thickness:	1973	Bearing Journal Size:		Bearing Journal Size:		# of Pads:	
Bearing Casing OD: Bearing Casing		Height:		Height:		# of Springs:	
Height:		Bearing Pot Weight:		Bearing Pot Weight:	1	Torque on Springs:	
Lined with Babbit,	,	Podring For Hoight		obering for troight.		Torque en opringer	
Plastic or Wood:		Babbit Lined:	Y/N	Babbil Lined:		Babbit Lined:	
Last Re-lined;		Last Re-lined:		Last Re-lined;		Last Re-lined:	
Lube Pump		Lube Pump	Yes - on	Lube Pump	No	Lube Pump	No
Motor Size:		Motor Size:	Shaft in sump	Motor Size:		Motor Size:	<u></u>
Motor Capacity:		Motor Capacity:		Motor Capacity:		Molor Capacity:	
			SECTION 4				
# of Wicket Gates:	20	Coated or Painted		# of Sheer Pins:	20 Links	# of Eccentric Plns:	20 (?)
Last Repaired;	?	Coaling Material:		Tapered:	Y/N	Eccentric Pins Offset:	
Spares in Stock:		Date Coated:		OD:		Length:	
Fits Other Units?	Y/N	Last Sample Material:		Longth:		Material:	
Gale Weight:		Sample Report # :		Material:			
Gate Width:	Y/N	Repair Date:		Nut Thread OD:			
Gate Height:	YAN	Report # :	· ·····	Thread Pitch:			
Gale Material:		Welding Repairs:	Y/N	Nut Size:			
Itom Ring Bushings New:	Y/N	OEM Gate:	Y/N	Number of Nuls:			
Off Set:	Y/N	Replacement Date:			_ _		
		Report # :					
Upper Stem (gate)		1					
OD: Bushing ID:		Lower Stem OD: Bushing ID:		Last Headcover Repair: Type of Repair:			
and the second sec				rypo or nepail?			
ast Bushing Install:		Last Bushing Install:		Operating Ring End			
Size: OD		Size: OD		Operating King End		Push/Pull Rods:	
ID:		ID:		ID:		Length Overall:	

2016 ACE SBA IR-30 Attachment 1 Page 6 of 17

		NSPI	HYDRO UNIT MA	STER LIST		Date Revised: (02-Dec-2010	
SYSTEM	: HES	PLANT:	St Margarets Bay	: TW1	Revised By:	Robert Lord	
Bushing Height		Bushing Height:		Height	:	Pin Diameter OD:	
Bushing Material		Bushing Material:		Ring Guides	: Y/N	Rod End Hole (1) ID:	
Ring Dimensions				Ring Guide Material		Rod End Hole (2) ID:	
OD				Upper Seal ID	:	Lower Seal ID:	
ID:				Upper Seal OD	:	Lower Seal OD:	
Height				Seal Material	:	Seal Material:	
# of Gate Links:							
			SECTION	5: TURBINE:			
Type of Wheel:		Straight or Non-Filted Turbine:		Cavilation Repairs:		Date Repaired:	
Number of				A		Repair/Report	
Blades/Buckets:		Mar. OD of Turbine:		Crack Repair: Report Identification		Prepared: CWB Repair	
Modilied (cut) Date:		Turbine Replaced:		Number:		Procedure # :	
Blade/Bucket Base				Bottom Ring Line			
Melei Sample # :				Bored:			
NDT Complete:		NDT Firm Date:					
NDT Test Date:							
Kelenderstellen			SECTION.6:	GOVERNOR:			
	Gate Sh	aft Style:			Cabinet Act	uator Style:	
Manufacturer:	Woodward	S/N:		Woodward S/N:		Manufacturer Date:	
Operating Pressure:	200	Piston Diameter:					
		Date Repaired:		Modifications:			
	***	Date Replaced:					
Modifications:							
Oil Votume:		Oil Type:	Tresso 68				
Pump Repairs:	Y/N	Repair Date:					·····
		Schedule	f				
Copper Lines	Y/N	Replacement:					
Rod Diameter:	1,996"	Last Overhaul:				Last 5-Year Overhaul:	
"V" Packing Size:	11 6.12	Rep:				Rep:	
"V" Packing P/N:							
	SECTION	BRAKES			SECTION I	OTHER	
Number of Brakes:	2						
Oil or Air Brakes:	Oll						
Type of Brake							
Material:		[
Size:							

- new air compressor/drier in plant to be hooked up fer air brakes

2016 ACE SPA IN-30 A that ment 1 Page 7 of 17 SYSTEM St. Margaret's Bay Hydro. SUBJECT TIDEWATER UND 4 SHEET No. Nova Scotla POWER DATE 13/14 Aug 2014. CHECKED An Emera Company DESIGN___ G. Michead Attamm Condition Assessment Identity countel-clockentse turns unit This Dralt tube · but the with bore scope Inspect 40 triled not allow bufficient buckets do shape the like a lot a ad getting bf heavy scale room, Looks therough marke divers -recommend ito chapt nobe cend area rinnel nspection. of Kunner Hancis type hunner dirtu VPM_ no visible signs of cracking some of the blades most nave point, see pics very bad cavitation on inderside the top pand could not get good hit at bæn Same blades of blad Pictures hoon but made moulds with aud-seal. Every black should have divers do a troncrigh this blade 15 nspection ion should have divers Wast tube te kings bushings Gate nver clearance checked by prying 050" movement on dial indirection have lover 020''and shaved nd condition, no o nd heft on them next overhours stay vanes - in relatively 6 rauck good Should b much / palnT not during renated 40 0170 REV 2011-08

î

ĺ

į

È

Ę

ĺ

2016 ACE SBA IR-30 Attachment 1 Page 8 of 17

Nova Scotia	SYSTEM	dewater #1	SHEET No.
An Emera Compa	a man mana.		DATE
heave gute sau seep bad	to-gate c inding the very th c side of in petter cuple have the castin paint on	in. getes (tavard run shape that the stainless seculing of	painner they per) seen to front face eclige, most de bottom Wicket
- drain - drain stem - butto - butto	oliny wi el very ea entire sc d, blasted cooling wa ely plugace tuds in ed section removed net needle 2e OK, hole cend on it fo uffy value iters. puns	silly, in hand-slæ roll case area sho and recorted dur ter intake screen l. Romared cind clea 21ace to reinstall sped cut of scre gunning them, the drain plur que good n alignment, is of minor lea off a buil cear	rild be pressure ing avernaul. Jas almost- ined. Had to screen as the loase when bolts rivets seem l, pwg has a kage from

2016 ACE SBA IR-30 Attachment 1 Page 9 of 17

3 SHEET No. SYSTEM. Nova Scotla = SUBJECT Tidewater POWER DATE CHECKED An Emera Company DESIGN ĺ • Caver Manhole condition good is darer 17 bot sbould neplaced studs 20 C 4 3/4 1/ Uns TTA \$X overhau are Stud ¢ during hn C Wheelpt area world upright 10 stand cannot leni tiqu Steel Walls liner no concret Т Sheelpit. ih tine hutton hoad fittings Or $\alpha 11$ linds sA JV no rew bushings area fer 2ms bolts, shalld cuping ine boring tigh area Very wheel pit. Jono 04 be bu. 'plŦ wheel olates. ì f-loor n NO should be 0 sheepit pressure overhau to OD'ICN 0 Ad vacuumed shoc irl n也 necto n wd COVER head No gate arms SH -hr 15 5 pered on a wicko) hère dla arm a he gates 1S drive e houstils that n tled s-fucl Una ſ ØC e Anci tibar Ø n C D e M re. rea. D 0 10 has 20 King over sweath Male 01 $a \wedge c$ 'n a 6 Umps 81 20éa UY. guide lower bean 10 311 J oads king and with 500 wrapped a 30 40 0170 REV 2011-08 Dul 12 rod S (rods, adjustables J ends both der on chr.p heshings 1/ D

ĺ

i

ŧ.

2016 ACE SBA IR-30 Attachment 1 Page 10 of 17

L SHEET No. SYSTEM..... Nova Scotia SUBJECT TIdewater = POWER CHECKED DATE An Emera Company DESIGN oushinds anta without A Ven Ticul 60 "alst the Matine Works Rice than ndh? NU íd on Ð Mensure d. .Cl VE MANE Not Hh spares Maser P.P 0 bushin YS hs WRal Ir then ç mare \mathcal{C} earance 1dir Same 1 CH marenent shows sid SK operating ALAG botates às 15122 Nº 6115 6 300 F4/165 42 10×14. NCODWARD 10 ner -0 eaking S ster maun pvend pin SCAY \mathbf{O} \$1 de handwheel garener Govency retations When \mathcal{O} 4-10 ÷ d open otte αr a 'n 42 hychaul hally about hots No down 10 00 por $\rho p i n$ 10 per 'n no 51 Inkages α odd schead 1 or shofts 2011 10 100 a AC endplai s how Signs c pin/ bushing on terminal gate sha worn. hatluden <u>ìì.s</u> 100 bearing 0 Brackett ower scride Bedsing. Kos Salignment houses love 20 Justable purposes. etel ald call perts bra 2 he hoses hydraulic are nos Shalle hydraulic operateo not air are ORK Mechard cull Ing 80 40 0170 REV 2011-08 3, remaining Uscible have DUD U bra °0\$ smooth 0 ÌS ba hal Ven Naro

Ĺ

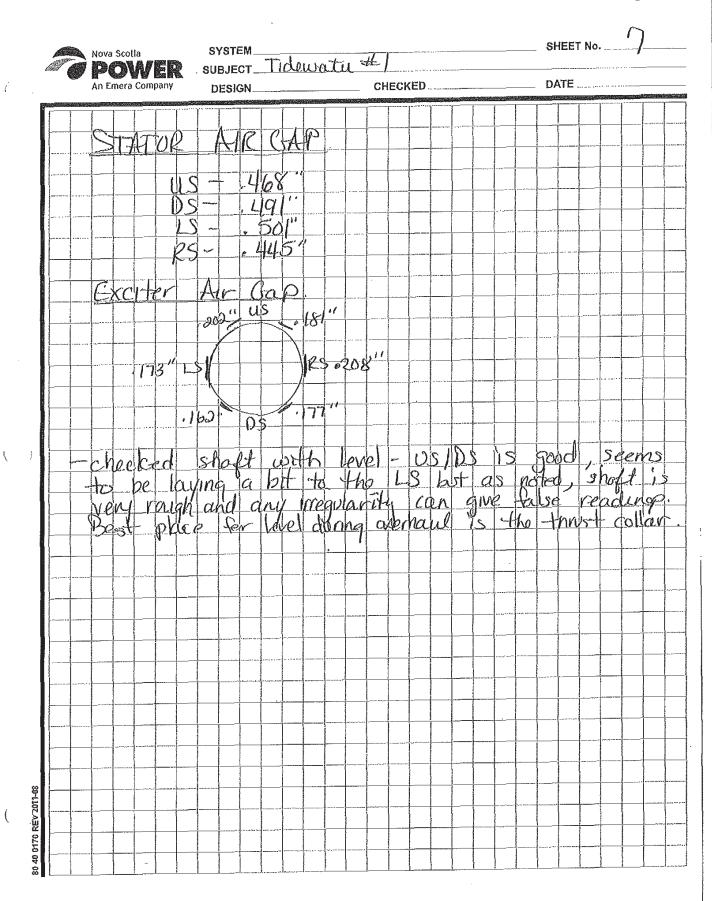
ł,

Ć

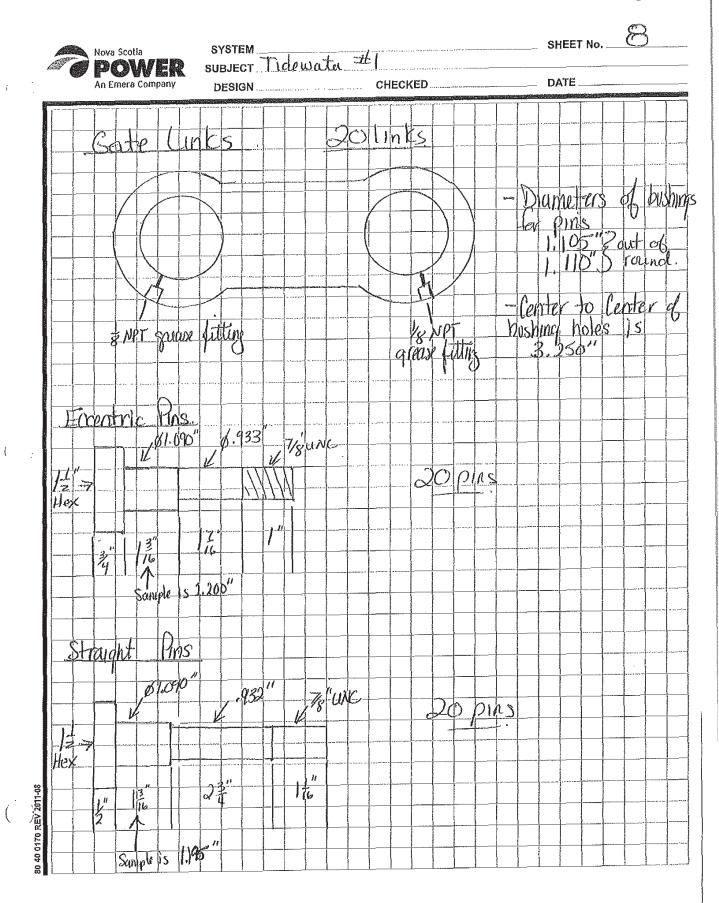
2016 ACE SBA IR-30 Attachment 1 Page 11 of 17

8	Nova Scolia POWER	SYSTEM		SHEET No
	An Emera Company	DESIGN	CHECKED	DATE
F				
	01-1-1-51			
	and the second sec			
	- roter	polles and sta	ter wind	1) nos are contect
	in oil	and carbon di	ust. Nott	dripping, just at
	haze			
	- paint	is bust-ered	off of	rotor poles (robably)
		o heat.		
			100050000	between poles at us
	- 7wo	roter pole com	TUTCATON'IS	
	cincl)	s are missir	19 113010	1 10 pre- 1 Should
		eprined		
	- Koter]	Stator spanla	_pe_da	y ice blasted, dried
	out	and painted	with appl	Reved paint.
	-XIO	problems with	_Megdait	
<u> </u>	Cil-i-	or has a hole	モリゴルレート	alt that is missing (DS
	- Short		ked area	
	- Starte		<u> </u>	
	Qurin	g alignment.		Vy see pictures.
		Stater windings	s are wa	
	-Upper br	relat. CSRIVE		
	- arms	are chilled	1 and t	apped that cap-
	be used	for evelue	ig thrus	tt during alignment
	- Here	is a lot ch	4thin 5	shins Under the
	legs,	has layers of	mica c	also por insulation.
	Slo as	ebould be	Madsime	d and some thick
	Shim s.		during	an overhand.
	SPILIKY I S	rraine up		
[
	SIP Ring			
ļ				
	- 10fa:	ted petween	upper 54	uide bearing and
	aver	suid bearing		
	- have	a depindete	wear	pattern from brushes
	shou		ed durin	ig overhaul.
	- have			rings due to
	leaka	6		beening pot piping
ļ			bearing	mistring -
	and	ower suiche	-12CUL-1114	-Herbauer

2016 ACE SBA IR-30 Attachment 1 Page 12 of 17


P	Nova Scol	NE		SYST SUBJE	EM CT	Tide	wat	ū								HEET		·	6.	
	An Emera	Compa	iny	DES	GN				CH	ECKE	ED					ATE .				
	Exc	bu	1 _ 0 mm t-	ama omn v-tat v-tat cver jqi	all	has no	0	om op		m	nes	n	ick	s d	in	hor	pa	L NG	25	
	-ORK			nei elect all sty or	ran pri le wh	ic she sh	cin s oril 41	jer are d	pe be	vo u	rki spg l	na rei	ale	bot	dui	in	9	O OV	er	
P P	pari	ng	T	n (emf	sera	tu	es								A					
	Thi Uppe Low	16	uld		1920	0 F 0 F		R	una una utp Kt	ut-	enip.	00	61							
	Iverk	Lead	CI	ane		Hp Rpn 5		- 34 - 30	50 20 a	÷.	2		10		bu			<u>,</u>		
	der	a-fe par A-k	ed iseo 2M	+0 1 / r ·	35 ери (С	- 00 20ec		5_a_ 0r 10		au to		he		Nel	ho ho		2.			
											l			**************************************						

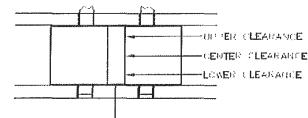
(


ł

í

2016 ACE SBA IR-30 Attachment 1 Page 13 of 17

2016 ACE SBA IR-30 Attachment 1 Page 14 of 17



2016 ACE SBA IR-30 Attachment 1 Page 15 of 17

WICKET GATE VERTICAL CLEARANCES TO GATES, HEEL TO TOE

PLANT TIDEWATER UNIT#1/92HI-01-02 DATE <u>13/14 Aug 2011</u> CREW <u>G-11 / AHP</u> WORK ORDER <u>(66233</u>

an			
GATE #	UPPER	CENTER	LOWER
1+2	.005"	.000"	.000
2 + 3	.000"	. CVQ"	. 000"
3 + 4	,000	·ao"	.021"
4 + 5	.000"	· 000	+ 000°
5 + 6	000"	· 003"	.012"
6 + 7	.000"	.000"	· 000"
7 + 8	,003"	. 000'	:040"
8 + 9	OIK	.000"	.009"
9 + 10	. 148"	• 149"	,15'3"
10 + 11	,037"	.032"	.038"
11 + 12	.000"	.000	1004"
12 + 13	.055 "	.055"	.082"
13 + 14	.006"	·003*	.000"
14 + 15	.006"	1000"	- 000"
15 + 16	.000"	· 000''	.010"
16 + 17	.000"	·000"	.004"
17 + 18	.000	.000"	· 004/
18 + 19	.000	1004"	.000
19 + 20	.006	·008"	. 008
20 + J.	,020*	,020"	· 020"
r (
3			

A Lower gate buskings have .020"-.050" clearance. checked with dual indic.

2016 ACE SBA IR-30 Attachment 1 Page 16 of 17

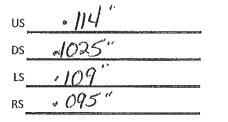
MEASUREMENT OF WICKET GATE CLEARANCE PLANT <u>Liclewater</u> Date UNIT # <u>1</u> CREW

LEARANCE DATE <u>13/14 Aug 2011</u> CREW <u>GAL / AA-1</u> WORK ORDER <u>66233</u>

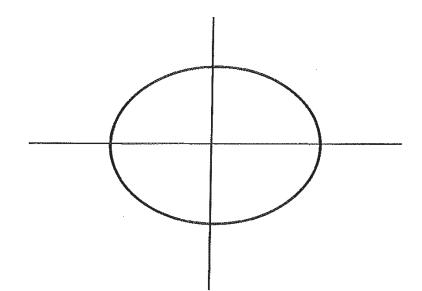
		(1)	
2	1	<i>47754235</i>	
	6		

GATE #	A	В	С	Unit = 1/100 m
1	. 0/0"	.000"	-009*	.000"
2	,005"	.003	.015	.000"
3	.016*	.015"	.027"	·000"
4	.014"	·008"	0.010 to 10	.000
5	.006"	,006"	,008"	.000
6	,004"	·004"	.003"	.000"
7	,008"	• 008"	·017"	. 000"
8	.009"	.003"	,009"	,000"
9	-004"	- 000 "	.018"	. 000"
10	. 000"	.000"	.033"	.023"
11	.003	, 000"	1000"	,000"
12	-000"	.000	,000"	1000"
13	.003"	. 004"	+ 009"	· 000"
14	,000"	,000 ^k	.009	- 0.00"
15	,002"	.000"	.003"	-002"
16	,003"	.002"	.œ3°	.cp2"
17	.004"	,003"	. 003	· co 2"
18	.004"	.003"	.004"	.003"
19	.006	.000"	1003"	,003"
20	.008"	,008"	. 003"	, (203"
21				
22				
23				
24				

2016 ACE SBA IR-30 Attachment 1 Page 17 of 17


RUNNER SEAL CLEARANCES

PLANT <u>licewater</u> UNIT # 1


DATE /3/ CREW WORK ORDER

UPPER

LOWER

US	046
DS	.077 "
LS	. 054
RS	• 062"

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-31:
2	
3	For CI# 47332, please describe the long-term operating strategy of Methals Generating
4	Station.
5	
6	Response IR-31:
7	
8	Methals Generating Station is the top unit on the Black River Hydro System. Investments have
9	been made to sustain the operational viability of this hydro system. NS Power expects to operate
10	the hydro assets for the foreseeable future and have no retirement plans.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-32:
2	
3	For CI# 47552, please describe and provide any results of the Non-Destructive testing
4	completed during 2015 that led to additional tube replacements and therefore a higher
5	project budget in 2015.
6	
7	Response IR-32:
8	
9	Please refer to Attachment 1 for a list of all of the Reheat finish tubes that are currently below
10	minimum wall thickness (0.100"). The tubes being replaced in 2016 were informed by non-
11	destructive testing inspections in 2014 and 2015. All those under 0.095" have been scheduled
12	for replacement. Reheat tubes replacement represents to most significant contribution to project
13	cost increase.

2016 ACE SBA IR-32 Attachment 1 Page 1 of 1

Trenton 5 Jul-15 RH Finish

Plt 7, 8, 9 & 11 are duplicates from 2014

	2014		
Plt #	Tube #	Point	UT
5	35	2	0.086
6	35	2	0.097
7	32	2	0.097
8	32	2	0.097
8	35	2	0.091
9	32	2	0.098
10	32	2	0.086
10	33	2	0.098
11	32	2	0.099
11	35	2.	0.099
12 '	32	2	0.097
14	32	2	0.092
15	32	2	0.087
19	32	2	0.092
30	32	2	0.095
31	32	2	0.095
31	33	2	0.095
and show			
		-	
			1

	2015		
Plt #	Tube #	Point	UT
5	32	2	0.092
7	32	2	0.097
8	32	2	0.095
9	32	2	0.094
9	34	2	0.091
11	32	2 - 3	0.092/.095
16	33	2	0.089
17	33	2	0.095
17	34	2	0.095
18	32	2	0.085
20	32	2	0.089
24	32	2	0.099
29	32	2	0.093
34	32	2	0.095
35	32	2	0.094
36	32	2	0.087
37	32	2	0.097
37	33	2	0.098

2045

23 Tubos to be Replaced IN2016

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-33:
2	
3	For CI# 48018, please provide the health assessment supported by independent industry
4	experts that recommends turbine blades replacement.
5	
6	Response IR-33:
7	
8	Please refer to Attachment 1 (excerpt from Tufts Cove Unit 1 TGA Condition Assessment). The
9	2011 recommendations by TG Advisors call for a contingency plan for numerous rows of blade
10	replacements. Given the age of the unit and higher than planned utilization due to the price of
11	fuel, NS Power technical staff have opted for planned replacement for the rows of highest
12	concern and, will react to other issues as found during inspection.

Plant	Unit #	Issue #	Availability Factor	Rating (MW)	Problem Description	Major Outage Assessment Plan and Recommended Corrective Action	Action Items Major Outage	Resp. Engr(s)	Next Major Outage Part/Service Provider	Next Major Outage Estimated Cost (\$)	Long Term Contingency Plan Cost (\$)	Cap (Y/N)	Last Insp. (Year)	Target Insp. Interval (years)	Comments	Inspection Findings	Date Complete
Tufts Cove	1	HP1	6		HP blade cracking, SPE, FOD, and creep damage	 1965, the first few HP stages should be inspected for signs of creep such as changes in shroud OD. Rows 1R to 3R replaced in 1999, but should be monitored. Heavy mid-span rubbing of the rotor may be caused by one of several mechanisms (rotor bow, cylinder humping due to cover/base temperature differentials, water induction, and vibration). Cause should be evaluated particularly if rubbing noted again at next outage. As a predictive tool, maintain turbine TSI in calibration and monitor unit vibration to detect minor 	 changes as indicator of blade issues. Very little data in the reports available for review. Research if any additional information is available and confirm if any other rows replaced besides 1R to 3R in 1999. Identify and procure a qualified blade repair contractor prior to next major outage. Develop a pre-outage contingency plan for HP rows in case any of these rows need replaced. Develop a specification for OEM and non-OEM blade vendors to bid on supply and installation either during this outage (if damage requires) or for a future 		Inspect / NDE Row 4 contingency Install		\$100,000 \$40,000		2008	2014			

Plant	Unit #	Issue #	Availability Factor	Rating (MW)	Problem Description	Major Outage Assessment Plan and Recommended Corrective Action	Action Items Major Outage	Resp. Engr(s)	Next Major Outage Part/Service Provider	Next Major Outage Estimated Cost (\$)	Long Term Contingency Plan Cost (\$)	Cap (Y/N)	Last Insp. (Year)	Target Insp. Interval (years)	Comments	Inspection Findings	Date Complete
Tufts Cove		HP1 (cont'd)					 blocks/blades in the high temperature zones especially first few rows of the HP. Note this many not be applicable to this blade design if integral shroud construction. Shroud OD dimensional changes (including shroud lifting as applicable). Shroud condition (inspect for radial rubs). General blade condition including signs of solid particle erosion (SPE) and foreign object damage (FOD). Integrity check of the brazed connections in the blade group (as applicable) Other recommendations are provided in PAW HP6 for the blade attachment. Photographs of each row showing general condition as-found and as-left condition. Develop forms to capture findings. This will allow development of a baseline for comparison at future outages for changes in blade condition. Plan to performance smooth as required to improve heat rate. Plan to perform a steam path audit to establish opportunities to improve heat rate. 										

Plant	Unit #	Issue #	Availability Factor	Rating (MW)	Problem Description	Major Outage Assessment Plan and Recommended Corrective Action	Action Items Major Outage	Resp. Engr(s)	Next Major Outage Part/Service Provider	Next Major Outage Estimated Cost (\$)	Long Term Contingency Plan Cost (\$)	Cap (Y/N)	Last Insp. (Year)	Target Insp. Interval (years)	Comments	Inspection Findings	Date Complete
Tufts Cove		IPLP1	8	100	- , - ,	 is assumed the balance of IP, rows 2R – 9R, are original to the initial 1970 install of this replacement rotor. Lack of historical data impedes ability to trend issues over time. There was no chronic evidence of rubbing detailed in the reports. Issues related to the blade attachment are discussed in PAW IPLP 5, "IPLP rotor peripheral cracking and IP dovetail cracking." As a predictive tool, maintain turbine TSI in calibration and monitor unit vibration to detect minor changes in unbalance that may be due to shroud and blade loss. 	• Develop a pre-outage contingency plan for all IP rows in case any of these rows need replaced. Develop a specification for OEM and non-OEM blade vendors to bid on supply and installation either during this outage (if damage requires) or for a future		Replace one row of IP blades Install		\$120,000 \$40,000	Y	2006	2014	Additional investigation is required to determine "most likely row to replace" (if any).		

Plant	Unit #	Issue #	Availability Factor	Rating (MW)	Problem Description	Major Outage Assessment Plan and Recommended Corrective Action	Action Items Major Outage	Resp. Engr(s)	Next Major Outage Part/Service Provider	Next Major Outage Estimated Cost (\$)	Long Term Contingency Plan Cost (\$)	Cap (Y/N)	Last Insp. (Year)	Target Insp. Interval (years)	Comments	Inspection Findings	Date Complete
Tufts Cove	2 1	IPLP1 (cont'd)					 HP (as applicable). Develop a contingency plan to replace one row of IP blades (most likely 2R). Shroud OD dimensional changes (including tile lifting as applicable). Shroud condition (inspect for radial rubs). General blade condition including signs of solid particle erosion (SPE) and foreign object damage (FOD). Integrity check of the brazed connections (as applicable). Other recommendations as provided in PAW IPLP5 for the blade attachment. Photographs of each row showing general condition as-found and as-left condition. Develop forms to capture findings. This will allow development of a baseline for comparison at future outages for changes in blade condition (e.g. being able to track tile lifting). Plan to performance smooth as required to improve heat rate. Plan to perform a steam path audit to establish opportunities to improve heat rate. Develop non-OEM sources of blade supply to improve delivery and cost. 										

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Requ	est IR-34:
2		
3	For C	CI# 47755:
4		
5	(a)	Please provide NS Power's TMP – Steam Turbine – High Temperature Boiling
6		Maintenance Practice.
7		
8	(b)	Please provide the total investment made to replace the steam turbine high
9		temperature fasteners on Lingan Unit#3.
10		
11	Respo	onse IR-34:
12		
13	(a)	Please refer to Attachment 1.
14		
15	(b)	The total investment made to replace the steam turbine high temperature fasteners on
16		Lingan Unit #3 was \$919,066. The primary factor in cost difference is a result of change
17		in value of the Canadian Dollar.

of 2

				2016 ACE		
NOVA COOTIA E					e No.:	TMP - 034
NOVA SCOTIA P	OWER INC.			Issue	Date:	December 2008
THERMAL PLAN	T MAINTENANCE	E PRACTICE	ES			
STEAM TURBINE-	HIGH TEMPERATU	RE BOLTING	MAINTENAN	ICE Revisi	on Date:	
					on No.:	0
Related Practices:				File No	D:	
INTRODUCTION:						
integrity of the Stean bolting and to anticip	g and replacement of a Turbine for continuate the replacement of ent the recording of e	ed safe operati f bolting that d	on. It is esse o not meet cri	ntial to know teria for conti	the condinued servi	tion of the existin ce. To accomplisi
There are many bolts	and studs used in a Ste	eam Turbine. T	he function of	the bolting is	to maintai	n a tight
WORK DESCRIPT	ION:					
	sis for managing the r onsumption of service		Steam Turbine	e High Tempe	rature Bol	ting due to materia
Steam Turbine. Locations of the bolti Pressure Outer Casing Valve Covers, Interce joint with no steam outages and costly re	to High Temperature ing covered include: 1 g, Intermediate Pressu pt Valve Covers, Com leakage into the plan pairs. Unlike many 1 ed and retightened afte	High Pressure ire Inner Casin ibined Reheat V it. Steam leaki plant applicatio	Outer Casing, g, Main Stop /alve Covers, ing from high ons, bolting us	High Pressur Valve Cover, Main and Reh -pressure join sed in Steam	re Inner C Control V eat Steam its may re Turbine ap	asing, Intermediat alves, Reheat Stop Leads quire maintenanc oplications is ofter
Steam Turbine High T	emperature Bolting N	laintenance Re	quirement:			
The basic requirement tightenings, number c data.	nts for tracking Stear of unit start/ stop cycl	n Turbine Hig les, running ho	gh Temperatur urs, bolt oper	re Bolt consu ating tempera	med life at the start of the st	are the number o ritical maintenanc
	nce personnel facilita ening events and othe					
	ws are to report all lication of thermocoup		uding stripped	d threads, bo	lts remove	d, damaged bolts
				oviginal loost		
ightening events, app	Temperature Bolt is ic	lentified and is	returned to its	original local	ion at asse	mbly.
ightening events, app	Temperature Bolt is ic	lentified and is	returned to its		ion at asse	mbly.
tightening events, app	APPROVED:	lentified and is Aark	returned to its Mark		ion at asse	mbly.

2016 ACE SBA IR-34 Attachment 1 Page 2 of 2

Supplementary Maintenance Activities:

The Actual life achieved will depend on the tightening procedure, the operating conditions, the quality of the original bolt material and the fabrication procedures used. Although the highest operating lives will be obtained with careful checks of all the important variables, in practice there will always be some uncertainty regarding actual performance. In many cases, bolts will be subjected to some non-destructive/ destructive inspections during scheduled maintenance outages to check for evidence of distress.

These supplementary inspections will typically consist of the following:

- Hammer test before disassembly (always)
- Inspection for evidence of steam leakage after disassembly of component joint (always)
- Visual inspection for defects of the bolt (always)
- Non Destructive Testing of bolt for cracks (Ultrasonic, Magnetic Particle, or Dye Penetrant)
- Hardness measurement of bolt
- Dimensional Inspection of outside diameters of shank, thread.
- Dimensional inspection of Inside diameters of nut or tapped hole
- Dimensional Stud wobble/Lean inspection
- Dimensional Inspection of Stud length
- Metallurgical inspection (Hardness and Replication)
- Destructive testing for Material Property examination (Tensile strength, yield strength, expansion, reduction of area, impact value

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Reque	est IR-35:
2		
3	For C	I# 47911:
4		
5	(a)	Was an EAM analysis conducted for this project? If not, why not?
6		
7	(b)	Please provide all analysis conducted on replacement of the high temperature
8		fasteners with non-OEM parts. Please include all any cost estimates for non-OEM
9		parts compared to OEM parts.
10		
11	(c)	Please provide any supporting documentation that leads to the conclusion that OEM
12		parts are the most reliable.
13		
14	Respon	nse IR-35:
15		
16	(a)	No, an EAM was not completed for this project. Please refer to SBA IR-28.
17		
18	(b)	NS Power does not have cost comparisons for non-OEM fasteners. Internal discussion
19		has begun to determine approach to non-OEM components. Some early Master Service
20		Agreements have been developed for a host of potential Turbine component supply as a
21		contingency. NS Power turbine maintenance and component replacement is typically
22		under the guidance of its OEMs. Independent industry experts are used to verify OEM
23		recommendations and external non-OEM vendors are typically utilized for contingency,
24		such as unplanned findings and rapid turnarounds.
25		
26		Non-OEM vendors have been utilized in the past for smaller projects with mixed results.
27		The re-occurring issue is that neither NS Power nor external vendors possess
28		manufacturing drawings and data to manufacture components to original or current
29		specifications. Due to the criticality of Turbines and the nature of Turbine Maintenance
30		(extensive work in short outage periods) quality is a primary concern.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

(c) NS Power has not concluded that there are no non-OEMs who can provide adequate
 replacements. While NS Power continues to explore non-OEM opportunities, it does so
 cautiously.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-36:
2	
3	For CI# 47505: Please provide yearly estimates for the next 10 years of the continued
4	capital investment of the Lingan mills that will be required to extend asset life and ensure
5	the reliability of the equipment.
6	
7	Response IR-36:
8	
9	Investment in the mills at Lingan is expected to be proportional to capacity factors over the next
10	10 years, which should see a decrease in capital investment accordingly. However, operating at
11	reduced loads will require additional monitoring to mitigate and plan for new failure
12	mechanisms. This could offset the decrease expected from reduced capacity factors.
13	
14	Based on anticipated capacity factors, it is projected that the average annual Lingan Mill
15	investment (10 year view) would be less than \$400,000 per year. This number would be
16	weighted higher in the earlier years in line with capacity factors.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Reque	est IR-37:
2		
3	For C	I# 46465:
4		
5	(a)	Was an EAM analysis conducted for this project? If not, why not?
6		
7	(b)	If total valve replacement is not necessary at this time, when would it be necessary?
8		
9	(c)	What is the extended life expectancy of the components that are being refurbished?
10		
11	Respo	nse IR-37:
12		
13	(a)	No, an EAM was not completed for this project. Please refer to SBA IR-28.
14		
15	(b)	Valve components are replaced based on condition assessment and carried out during the
16		inspection intervals.
17		
18		A total valve replacement would typically only take place during a full steam chest
19		replacement, based on the chest condition monitoring, and operation history. A strategic
20		spare main steam chest is currently being explored with vendors. This common chest
21		would cover a contingency replacement of Tufts Cove 2, Tufts Cove 3, Point Tupper 2,
22		and Trenton 5 should it be required.
23		
24	(c)	Component life varies based on function and service. The main components being
25		replaced in this project (valve spindles and bushings) can see 6-10 years of service, other
26		components such as seats or reheat valve components can see even longer service life.
27		Service life is determined primarily by condition assessment through regular inspection
28		and OEM recommendations.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-38:
2	
3	For CI#47613, was an EAM analysis conducted for this project? If not, why not?
4	
5	Response IR-38:
6	
7	An EAM analysis was not completed for this capital item as the Port Hawkesbury Biomass plant
8	is must run generation in accordance with section 5(2A) of the Nova Scotia Renewable
9	Electricity Regulations. In order to reliably operate the unit, this boiler refurbishment must be
10	completed.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-39:
2	
3	For CI# 47666, please explain the difference in costs between the 2014 (CI# 44350) and
4	2015 (CI# 46469) refurbishments and the refurbishment project for 2016 (CI# 47666).
5	
6	Response IR-39:
7	
8	Boiler refurbishment projects such as these are based on selective replacements determined by
9	the inspection that occurs prior to and during the actual outage where the refurbishment occurs
10	and can be expected to vary year over year. The ACE 2016 submission for CI 47666 is based on
11	46469 actual spending completed during the 2015 Outage. A similar amount of work is expected
12	in 2016.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-40:
2	
3	Please provide an itemized list of the projects to be completed in the 2016 Lingan Unit #4
4	planned outage and compare to the projects and project costs performed in the 2015
5	Lingan Unit #3 planned outage.
6	
7	Response IR-40:
8	
9	Please refer to Attachment 1, also provided electronically.
10	
11	The largest driver in the cost increases from Lingan Unit #3 to Lingan Unit #4 is the decrease in
12	value of the Canadian dollar as many materials and services are in US Dollars.

2016 ACE SBA IR-40 Attachment 1 Page 1 of 1

Lingan Unit #4 Outage - 2016			Lingan Unit #3 Outage - 2015			
CI#	ACE 2016 Project I# Project Long Title Total		Cl#	Project Long Title	ACE 2015 Project Total	
47658	LIN4 L-0 Blade Replacement	4,597,152	42806	LIN3 L-0 Turbine Blade Replacements	4,157,741	
47673	LIN4 Generator Rotor Rewind	2,602,159	43088	LIN3 Generator Rotor Rewind	1,901,480	
47755	LIN4 Turbine High Temperature Fasteners Replacement	1,073,877	43094	LIN3 HT Fastener Replacement	868,348	
43170	LIN4 AVR Replacement	842,207	37611	LIN3 - Generator Excitation & AVR System Replacement	740,497	
47657	LIN4 High Voltage Bushing Refurbishment	822,570	40363	LIN3 High Voltage Bushing Refurbishment	628,531	
47664	LIN4 Division Wall Replacement	619,243	46467	LIN3 - Division Wall Replacement	635,747	
47869	LIN4 Bottom Ash Refurbishment	616,599	46070	LIN3 Bottom Ash Replacement	475,908	
47666	LIN4 Boiler Refurbishment 2016	571,859	41233 LIN3 Boiler Refurbishment		826,133	
47663	LIN4 - SH5 Boiler Tube Replacement	538,776	Not completed on Lingan Unit #3			
47689	LIN4 - Air Heater Refurbishment	521,951	46463	LIN3 - Air Heater Refurbishment	477,566	
47690	LIN4 Burner Front Refurbishment	480,349	46482	LIN3 Burner Front Refurbishment	299,261	
47762	LIN4 Analytical Panel Replacement	401,658	46496	LIN3 Analytical Panel Replacement	276,756	
47933	LIN4 Turbine Vibration Monitoring Upgrade	238,216	Not completed on Lingan Unit #3			
47863	LIN4 Turbine Valves Refurbishment	204,548	46481	LIN3 Turbine Valve Refurbishment	194,647	
43239	LIN4 BFP Proportional Recirculation Line Control	158,524	24 Not completed on Lingan Unit #3			
47866	LIN4 Condenser Tube Protective Coating	156,043	46532	LIN 3 Condensor Tube Protective Coating	241,868	
47955	LIN4 ID FAN Shaft Refurbishment	124,952		Not completed on Lingan Unit #3		

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Request IR-41:
2	
3	For CI# 46352, please describe how risk profiling has provided guidance on the timing of
4	the refurbishment.
5	
6	Response IR-41:
7	
8	Typically, as in this case, the risk profile brings attention to an item that is in need of some level
9	of mitigation. Once risk reaches a threshold (a risk of 15 as described in CEJC risk matrix), a
10	technical review ensues to determine the nature and timing of any required mitigating measures.
11	For complex asset classes, third party, industry experts may be involved in the review. For less
12	complex assets, plant engineers or central engineering support would be engaged to finalize
13	timing and scope. As part of this process, as in this case, opportunities would be considered for
14	optimizing the timing of associated work within a planned outage window of the immediate year
15	or future years, while managing the risk

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

1	Requ	est IR-42:
2		
3	Refer	ence CI#46587, Metro Voltage Support Add Capacitor
4		
5	(a)	NPSI claims that Tuft's Cove generation is committed to provide reactive power
6		support during the combination of high transfer levels on the Onslow South
7		transmission corridor and high system load. In addition, NSPI states (page 618 of
8		Exhibit N-1) that Tuft's Cove is "occasionally required to be dispatched in order to
9		provide reactive power capability in the metro Halifax area". Please provide the
10		instances where Tuft's Cove generation was committed to satisfy these needs in the
11		past three years. Include the Onslow South transmission flow and system load for
12		instances where the Tuft's Cove generation was dispatched uneconomically to meet
13		the particular reactive power needs.
14		
15	(b)	Please explain how Tufts Cove is dispatched uneconomically? Is the unit already
16		committed economically at a particular level, but dispatched uneconomically to a
17		higher level to satisfy the reactive power needs?
18		
19	(c)	Please provide instances where the unit was already committed economically but
20		was dispatched at a higher level to provide reactive power for reliability. Also
21		provide instances where the unit was committed uneconomically to meet the
22		reactive power needs.
23		
24	(d)	NSPI states that (page 618 of Exhibit N-1) "By installing capacitor banks, reactive
25		power requirements to support steady state voltage from Tuft's Cove generators
26		can be reduced." Please explain when Tuft's Cove generator will be dispatched
27		uneconomically to supply reactive power after the installation of the proposed
28		capacity banks.

29

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	(e)	NSPI states (page 619 of Exhibit N-1) that "A study using the system planning
2		simulation model Plexos has concluded that a reduction in must-run Halifax based
3		generation improves the economics of the system dispatch". Please provide this
4		study.
5		
6	(f)	CI# 48025, L7018 Upgrade to 345 kV & Capacitor bank addition addresses the
7		same reliability issues as CI#46587. Was the capacity bank addition that
8		accompanies the L7018 upgrade included in the Plexos model evaluation for
9		alternative B of CI# 46587? If not, why?
10		
11	Respo	onse IR-42:
12		
13	(a)	Instances where Tufts Cove generation is committed and dispatched to provide reactive
14		power support in the Metro Halifax area are not archived.
15		
16	(b)	In the context of CI 46587, constrained economic dispatch includes the concept of unit
17		commitment and unit dispatch. Unit commitment is the decision to bring a unit on-line,
18		whereas unit dispatch is the decision to operate an on-line unit at a level within its
19		minimum and maximum capability. Before a Tufts Cove unit is committed, it is off-line
20		and therefore does not provide any reactive power or contribute to MDRR. At some level
21		of Onslow South flow, a Tufts Cove unit must be committed to provide some
22		contribution to MDRR to support the flow. Once the unit has been 'committed' it is
23		likely to be 'dispatched' at minimum MW generation level, and it provides a block of
24		reactive capability to contribute to MDRR. As Onslow South flow increases and the
25		Tufts Cove unit MW output remains at minimum, the unit's reactive power is called upon
26		to support local MVar load and MVar support for transmission flow, therefore its reactive
27		reserve declines. To maintain Onslow South within reliability limits, the MW output
28		(dispatch) of the Tufts Cove unit which is on-line must increase to reduce transmission
29		flow or a second Tufts Cove unit must be committed to increase MDRR via the second
30		unit's reactive capability. The capacitor banks proposed in CI 46587 will relieve the

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1		reactive power load on the previously committed Tufts Cove unit to permit higher
2		Onslow South flow, resulting in lower dispatch of the committed Tufts Cove unit, or the
3		delay in the commitment of the additional Tufts Cove unit.
4		
5	(c)	Please refer to part (a).
6		
7	(d)	Tufts Cove generation supports both steady-state reactive power requirements and
8		provides dynamic reactive power reserve. Tufts Cove generation may be dispatched out
9		of merit to support either of these reactive power requirements, but it might also be
10		dispatched thusly to avoid thermal overloading of transmission lines following a
11		contingency. Based on the Plexos study conducted for CI 46587, there will be minimal
12		out of merit dispatch of Tufts Cove strictly due to reactive power requirements after the
13		installation of the proposed capacitor banks, but other factors will still result in Tufts
14		Cove limitations.
15		
16	(e)	Please refer to CA IR-5.
17		
18	(f)	No. The project which identified the capacitor bank additions under CI 46587 was
19		justified on its own merits using a Plexos model. The capacitor banks associated with CI
20		48025 are required after the upgrade of L7018 and do not provide a benefit before that
21		upgrade. The capacitor banks associated with the upgrade of L7018 are incremental to
22		those associated with CI 46587.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

CONFIDENTIAL (Attachment Only)

1	Reque	st IR-43:
2		
3	Refere	ence CI# 46591, 88S Lingan Replace 230kV GIS
4		
5	(a)	Please explain the need for the addition of a new air insulated breaker and a half
6		scheme with five breakers (and provision for a sixth).
7		
8	(b)	Did NSPI evaluate the reliability impact of the new breaker scheme? If yes, please
9		provide the documentation.
10		
11	(c)	Provide the source of the information for calculating the cost of each option listed on
12		page 610 of Exhibit N-1. As an example, provide the vendor or other documentation
13		used for identifying the cost of GIS breakers, SF6 dead tank breakers etc.
14		
15	Respon	nse IR-43:
16		
17	(a)	The existing Westinghouse GIS portion of the Lingan Substation was manufactured and
18		installed in 1978-79. It has reached its "end of life" and needs replacement. This portion
19		of the substation includes 5 GIS circuit breakers and associated disconnect and grounding
20		switches, PTs and GIB (Gas insulated Bus). The circuit breakers are no longer supported
21		by the manufacturer and there is no opportunity to get any needed proprietary spare parts.
22		The equipment is physically deteriorated, as well as experiencing SF6 gas leaking.
23		
24		The existing layout of the Westinghouse equipment (5 breakers) does allow for a 6^{th}
25		breaker. The proposed replacement with air insulated equipment is a copy to the existing
26		electrical configuration. It was determined that an air insulated solution would be the
27		more cost effective solution to a wholesale change out of the GIS, including all of the
28		same vintage GIB (Gas Insulated Bus).
29		

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

CONFIDENTIAL (Attachment Only)

1		By the nature of NS Power's standard layout 230kV substations, the provision for a 6^{th}
2		breaker provides flexibility but does not add any significant cost to the project.
3		
4	(b)	NS Power did not perform a Substation Reliability Analysis of the new breaker scheme
5		because operational experience with the existing breaker-and-a-half arrangement since
6		1980 has been acceptable.
7		
8	(c)	To arrive at the comparative cost estimates to the alternatives considered, current cost
9		information was sought from venders for all of the major cost components, while the
10		balance of plant costs, engineering, construction and commissioning costs were arrived at
11		using our in-house experiences and costing information. Many of these cost component
12		prices were received through verbal conversation and not through formal vendor pricing.
13		
14		For air insulated equipment, NS Power has supplier of choice pricing agreements for 3
15		years for HV circuit breakers (MEPPI) and disconnect switches (Mindcore
16		Technologies), which led to reliable pricing information. Please refer to Partially
17		Confidential Attachments 1 and 2 respectively. For such things as 230kV power cable,
18		230kV GIS equipment and GIB, budgetary info was received from various suppliers
19		through the aforementioned verbal conversations.

REDACTED 2016 ACE SBA IR-43 Attachment 1 Page 1 of 5

Supplier of Choice Breakers Greater than 69kV

Recommendation – P-14-243

April 2015

Submitted to:

- Hugh Kerr Manager, Procurement
- Matt Drover Senior Manager, Transmission & Distribution Technical Services, Reliability
- Shawn Connell
 Senior Manager, Procurement (Unavailable due to Vacation)
- Paul Casey
 Senior Director, T&D, Integrated Customer Service
- Craig Sutherland Senior Director, Procurement and Retail Operations, Supply Chain and Real Estate

Prepared by: (on the direction of the Evaluation Team)

• Kathryn Richardson Procurement Lead

Evaluation Team:

David Downey Senior Electrical Engineer

NSPI's objective is to select a Supplier of Choice who is competitive from a cost and quality perspective, has the ability to meet the required project timelines and meets the required specifications.

Recommendation:

The Evaluation Team recommends NSPI award the Supplier of Choice Agreement for Circuit Breakers greater than 69kV to:

• CT Sales (Distributor of Mitsubishi Breakers)

Total CND expenditure from this Recommendation:

	ACCOUNT INFORMATION					
Project / Account Number	Currency	2015 \$ Value	Description			
2-012-043-800-T833	USD	\$	Five (5) 69 kV Breakers and Three (3) 138 kV Breakers			
	CAD	\$	April 1, 2015 Conversion			
2-012-043-800-T827	USD	\$	Two (2) 138 kV Breakers plus CTs (Separate Project)			
	CAD	\$	April 1, 2015 Conversion			
Total 2015 Recommended Spend	I CAD	\$				
	PROJECT B	UDGET INFORMATIO	DN (PE or Main Item) Project Number T833			
Approved budget amount			\$ 11			
Forecast Total Project Amt			\$			
Committed to Date						
Spend to Date			\$			
ATO Implications	Yes:					
	No					

REDACTED 2016 ACE SBA IR-43 Attachment 1 Page 2 of 5

Supplier of Choice Breakers Greater than 69kV

Recommendation – P-14-243 April 2015

Process Overview:

On January 30, 2015, a Request for Proposal for a Supplier of Choice Agreement for Circuit Breakers greater than 69kV was issued to the following companies:

•	
•	CT Sales
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

By the Close Date, February 27, 2015, the following 5 proponents decided to submit proposals for this project:

The evaluation of the bid focused on the following Key Selection Criteria:

- Understanding and ability to meet Specification requirements
- Speed and efficiency of delivery methods and timelines
- Pricing
- Experience in the industry and reputation of Supplier / Manufacturer
- Warranty

REDACTED 2016 ACE SBA IR-43 Attachment 1 Page 3 of 5

Supplier of Choice Breakers Greater than 69kV Recommendation – P-14-243

April 2015

POWER

Technical and Commercial Evaluation:

For the following reasons, and and			were unable to meet the required sp	ecifications provided in the RFP:
•				
•				
•				

The proponents were asked to provide firm pricing for 2015-2017 for 7 breaker types commonly used by NSPI. Estimated quantities were available for 2016-2017 for two of these breaker types along with firm volumes for 2015. Quotes were also obtained for the breaker types without firm or estimated quantities to allow for expedited purchasing in the event of a breaker failure.

The following chart outlines the various breakers requested and the estimated volumes provided to proponents:

	NSPI Estimated Quantities									
Year	Unit of Measure	69kV-1.2	69kV-2	138kV-1.2	138kV-2	230kV-2	230-kV-3	345k-3		
2015 Estimated Quantity	Units	5		5						
2016 Estimated Quantity	Units	5		3						
2017 Estimated Quantity	Units	5		3						

As CT Sales and **each** provided proposals which met the required specification, their bids were commercially evaluated. The following chart shows the pricing, delivery timeline, warranty and payment terms provided by each proponent for each breaker type:

Vendor	Factor	Unit of Measure	69	kV-1.2		69kV-2	1	38kV-1.2	1:	38kV-2	23	30kV-2	2	30-kV-3	3	45k-3		Total
	•					ABB Inc.												
	Unit Price (Firm 2015-2017)	CAD	\$		\$		\$		\$		\$		\$		\$			
	Total Value 2015	CAD	\$	Т	\$	-	\$	532,890.00	\$	-	\$	-	\$	-	\$		\$	
	Total Value 2016+2017	CAD			\$				\$	-	\$	-	\$	-	\$		\$	
	Unit Price (Firm 2015-2017)	USD	\$		\$		\$		\$		\$		\$		\$			
	Total Value 2015	USD	\$		\$	-		Γ	\$	-	\$	-	\$	-	\$		\$	
	Total Value 2016+2017	USD			\$			-	\$	-	\$	-	\$	-	\$		\$	
	•													Total	3 Year Co	ontract CA	D\$	
														Total	3 Year Co	ontract US	D\$	
	Warranty	Years																_
	Extended Warranty Option	(Y/N)																
	Extended Warranty Cost	CAD																
	Payment Terms	Days					1											
					(CT Sales												
CTS	Unit Price (Firm 2015-2017)	CAD	\$		\$		\$		\$		\$		\$		\$			
CTS	Total Value 2015	CAD		T.	\$	-			\$	-	\$	-	\$	-	\$		\$	
CTS	Total Value 2016+2017	CAD	\$		\$	-		-	\$	-	\$	-	\$	-	\$		\$	
CTS	Unit Price (Firm 2015-2017)	USD	\$		\$		\$		\$		\$		\$		\$			
CTS	Total Value 2015	USD		T.	\$	-		T I	\$	-	\$	-	\$	-	\$		\$	
CTS	Total Value 2016+2017	USD			\$			-	\$	-	\$	-	\$	-	\$		\$	
				-										Total	3 Year Co	ontract CA	D\$	
														Total	3 Year Co	ontract US	D \$	
CTS	Warranty	Years										5		6				
CTS	Extended Warranty Option	(Y/N)																
CTS	Extended Warranty Cost	CAD																
CTS	Payment Terms	Days							-									

CT Sales provided the best pricing, warranty and delivery timelines of the two proposals. NSPI has been purchasing Mitsubishi breakers through this vendor for many years and this product has had an excellent track record in terms of quality and delivery schedule. For these reasons, CT Sales' proposal scored highest of all proposals submitted. Please see Appendix A for a full breakdown of vendor scoring for each criteria listed above.

Four (4) pricing alternatives were ultimately offered by CT Sales. The evaluation team analyzed these alternatives using the firm 2015 volumes and the 2016-17 estimated volumes to determine the best pricing option. The estimated 3 year contract totals for each option are shown below in green:

REDACTED 2016 ACE SBA IR-43 Attachment 1 Page 4 of 5

Supplier of Choice Breakers Greater than 69kV

Recommendation – P-14-243

April 2015

		CT Sales			
Factor	Unit of Measure	69kV-	1.2	138kV-1.2	Total
Option 1: Unit Price (Firm 2015-2017)	CAD	\$	\$		
Total Value 2015	CAD	\$	\$		\$
Total Value 2016+2017	CAD	\$	\$		\$
				Total 3 Year Contract	\$
Option 2: Unit Price (Firm 2015-2017)	USD	\$	\$		
Total Value 2015	USD	\$	\$		\$
Total Value 2016+2017	USD	\$	\$		\$
				Total 3 Year Contract	\$
Option 3: 2015-CAD firm within bandwidth +/-3 pts. (base rate = 1/1.2603)	CAD	\$	\$	_	
Total Value 2015	CAD	\$	\$		\$
Option 3: 2016-CAD firm within bandwidth +/-3 pts.	CAD	\$	\$		
Total Value 2016	CAD	\$	\$		\$
Option 3: 2017-CAD firm within bandwidth +/-3 pts.	CAD	\$	\$		
Total Value 2017	CAD	\$	\$		\$
				Total 3 Year Contract	\$
Option 4: Firm 2015-USD	USD	\$	\$		
Total Value 2015	USD	\$	\$		\$
Option 4: Firm 2016-USD	USD	\$	\$		
Total Value 2016	USD	\$	\$		\$
Option 4: Firm 2017-USD	USD	\$	\$		
Total Value 2017	USD	\$	\$		\$
				Total 3 Year Contract	\$

Option 4 presented the best value and least risk to NSPI over the life of the contract. Purchasing the breakers in the USD proposed saves NSPI a projected 8% over the firm 2015-17 CAD price offered and 1% over the firm 2015-17 USD price.

The evaluation team spoke with the Treasury team to ensure purchasing 2015 volumes in USD was acceptable. Their recommendation was to purchase in USD based on exchange rate forecasts and the vendor's USD vs. CAD offer.

Recommendation:

The evaluation team confidently presents this Recommendation and believes the process was both competitive and transparent and requests your approval.

REDACTED 2016 ACE SBA IR-43 Attachment 1 Page 5 of 5

Appendix A:

		В	id Co	mpar	ison \	Norks	sheet	
		Criterion			Bidders			
#	Evaluation Criterion	Weighting (%) Revise Weightings based on Project requirements	1.	Does no 2 - Mee	Rank 1- ot meet re ets requir eds requi	equireme ements		Key Differentiator Between Proposals - (The significant proposal indicators driving the extreme highs or lows within the scoring)
1	Understanding and ability to meet specification requirements		•					
	Score							
2	Speed and efficiency of delivery methods and timelines	-	•	•	•		•	
	Score							
3	Pricing	-	•					
	Score							
4	Experience in the industry and reputation of Supplier / Manufacturer		•	•	•		•	
	Score							
5	Warranty		1	I	I			
	Score							
	TOTAL SCORE	100.0%						

REDACTED 2016 ACE SBA IR-43 Attachment 2 Page 1 of 4

Supplier Of Choice-Air Switches Recommendation – P-14-234 August 2015

Submitted to:

- Matt Drover Senior Manager, T&D Technical Services, Reliability
- Jason Penny Director, Procurement

Prepared by: (on the direction of the Evaluation Team)

Hugh Kerr Procurement Manager

Evaluation Team:

- David Downey Senior Engineer, T&D Technical Services
- Bob Johnson Engineer, T&D Technical Services -Consultant

NSPI's objective is to select a Service Provider who is competitive from a cost and quality perspective, has the ability to meet the required project timelines and meets the required specifications.

NSPI requires the partner of choice for the supply of Air Switches. This initiative was created for the following reasons

- -Establish standard offerings and usage
- -Establish consistent budgetary supply cost for the next three years
- -Enable the supplier to plan production (delivery time delay avoidance)

Recommendation:

The Evaluation Team recommends NSPI award the SOCA for AIR-Switches to

Mindcore

Total CND expenditure from this Recommendation:

		ACCOUNT INF	ORMATION
Project / Account Number	Currency	\$ Value	Description
	CND	\$	From the Menu of 12 -est.6 will be commonly utilized
	CND		*Please note-this is is an estimated value based upon forecasts of the spend that maybe spent by NSPI over life of agreement
	CND		
Total Forecasted Spend 3 years	CND		
	PROJEC	CT BUDGET INFORM	ATION (PE or Main Item)
Approved budget amount			
Forecast Total Project Amount	The cha	rges centers will be det	ermined by capital spend accounts and will be filled out at time of order.
Committed to Date			
Spend to Date			
ATO Implications			Yes:

REDACTED 2016 ACE SBA IR-43 Attachment 2 Page 2 of 4

Supplier Of Choice-Air Switches

August 2015

Recommendation – P-14-234

No:

х

	Est. Quantities for 2015		Mindcore (CDN)
Curitala Tura	Est. Quantities for 2015		windcore (CDN)
Switch Type			
Type 1 (27 kV , 1200A **, Cu, Hook stick)	24	625. US\$	685.00
Type 2 (72.5 kV, 1200A, Al, Vert. Break, Vert. Mount)	4	10842. US\$	6,660.00
Type 3 (72.5 kV, 2000A, Al., Vert. Break, Vert. Mount)		11142. US\$	7,650.00
Type 4 (145 kV, 1200A, Al., Vert. Break, Vert. Mount)		10611. US\$	9,995.00
Type 5 (145 kV, 2000A, Al., Vert. Break, Vert. Mount)		11011. US\$	11,270.00
ype 6 (72.5 kV, 1200A, Al., Vert. Break, Horiz. Mount)	2	10842. US\$	6,660.00
ype 7 (72.5 kV, 2000A, Al. , Vert. Break, Horiz. Mount)		11142. US\$	7,650.00
Type 8 (145 kV, 1200A, Al., Vert. Break, Horiz. Mount)	4	10611. US\$	9,995.00
ype 9 (145kV, 2000A, Al. , Vert. Break, Horiz. Mount)		11011. US\$	11,270.00
Type 10 (72.5 kV, 1200A, Al., Side Break, Vert. Mount)			
Type 11 (145 kV, 1200A, Al., Centre Break, Vert. Mount)			
Warranty			
Pricing conditions			
Delivery			
Quick Break Whips addition			
•			
Motor Operator			
Price Validity Period			
Fechnical Acceptability			ľ

REDACTED 2016 ACE SBA IR-43 Attachment 2 Page 3 of 4

Supplier Of Choice-Air Switches

Recommendation – P-14-234

August 2015

Process Overview:

The following is a list of disconnect switch manufacturers that submitted a proposal to our RFP-14-234;

Of the above submissions, only 3 manufacturers provided the full suite of pricing & information requested;

- 1)
- Mindcore Technologies

Technical Evaluation:

A technical review of the switch proposals was conducted.

NSP has purchased disconnect switches from all of the above mentioned manufacturers in the past, and all are technically acceptable, however, some are more robust and have better design features than others that, in our experience, would lead to longer trouble free service life.

Mindcore Technologies is a Canadian manufacturer. Mindcore, although a relatively new player in the switch business compared to C/P and SS, their pedigree comes from the acquisition of switch manufacturers designs , molds , etc. that include Kearney National, Pursley 2000, and Dominion Cutout. (All very good switch manufactures of the past) . In many cases, they have improved on these old designs to provide an even better product.

Recently, Mindcore has been working with us to provide parts/components for our 230kV switch refurbishment program as well as recently supplied 2- 345kV disconnect switches at Onslow.

Commercial Evaluation:

Upon review it was found that Mindcore had the more competitive bid. In order to solidify pricing in this category and ensure that the pricing and offering was optimum further discussions (negotiations) took place the result was as shown:

Mindcore (CDN)	Year Total	Mindcore (CDN)	Year Total			
				year 1	year two	Year Three
	\$	\$	\$			
	\$	\$	\$			
	\$	- \$	\$			
	\$	- \$	\$			
	\$	- \$	\$			
	\$	\$	\$			
	\$	- \$	\$			
	\$	\$	\$			
	\$	- \$	\$			
	\$	- \$	\$			
	\$	- \$	\$			
	\$		\$	-		
			5			
		included				
2015 prices shown		Fixed				
add for each out year					Cost Avoidance	\$

REDACTED 2016 ACE SBA IR-43 Attachment 2 Page 4 of 4

Supplier Of Choice-Air Switches Recommendation – P-14-234 August 2015

Also the supplier and

NSPI have concluded that for the sake of delivery times and better production coordination-the supplier and NSPI shall meet at the end of the year to review the future year's requirements (non-committal). This creates a more partnership environment and enables both parties flexibility.

Recommendation:

The evaluation team confidently presents this recommendation and believes the process was both competitive and transparent and requests your approval.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Reque	est IR-44:
2		
3	Refer	ence CI# 46811, 2H Armdale Transformer addition
4		
5	(a)	Please indicate the reason for adding the new transformer now instead of a
6		subsequent years since the load growth will not materialize until 3-5 years in the
7		future.
8		
9	(b)	How are the loading and contingency concerns described on page 654 of Exhibit N-1
10		alleviated today when there is no additional transformer?
11		
12	(c)	Please indicate whether NSPI conducted a least-cost solution or other economic
13		analysis for this project? If so, please provide the results.
14		
15	(d)	Is there a mobile transformer available for contingency/maintenance needs? Why or
16		why not?
17		
18	Respo	nse IR-44:
19		
20	(a)	Please refer to Attachment 1 to CI 46811 (Peninsular Halifax and Area Distribution
21		Planning Study Report number 342-1113-H50) at page 657 of the 2016 ACE Plan. In
22		addition, of the three main substations supporting the peninsula (104H Kempt Rd, 1H
23		Water St, and 2H Armdale), Armdale is the only one without any form of redundant
24		voltage transformation capacity. In the event of a transformer failure on the peninsula,
25		both 104H and 1H have adjacent transformers that are capable of picking up affected
26		customers. With only a single transformer available at Armdale, if that transformer were
27		to fail, full restoration of all the affected customers could require the installation of a
28		mobile substation. Given the geographical location of the Armdale substation and the
29		physical dimensions of the mobile substation, the time of day, traffic, weather, and other
30		ambient conditions can heavily impact the time required to transport and energize the

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1		mobile substation. With a second transformer available at the site, NS Power would have
2		increased flexibility and ability to restore affected customers in the event of a failure in a
3		more expeditious fashion and potentially remove the need to install a mobile substation.
4		
5	(b)	Generally, NS Power has sufficient capability to transfer the existing customer load from
6		2H Armdale to adjacent stations. In doing so, the equipment at adjacent stations can be
7		stressed to a greater degree than normal and the rate of loss-of-life of said equipment can
8		be impacted. It is more advantageous to have the capability to transfer load in a
9		contingency situation without placing undue stress on adjacent substations and potentially
10		accelerating future equipment failures.
11		
12	(c)	Please refer to Appendix C to Attachment 1 of CI 46811 (Peninsular Halifax and Area
13		Distribution Planning Study Report number 342-1113-H50).
14		
15	(d)	A mobile substation is available as a contingency for 2H Armdale substation. Good
16		utility practice calls for the application of a mobile substation in order to restore service
17		in a contingency situation where there is insufficient capability or increased risk
18		associated with transferring load to an adjacent station. A mobile substation can
19		generally be brought on-line to restore service to customers in a more expeditious fashion
20		than moving a full-sized spare transformer from NS Power's spare storage facility. The
21		mobile substation provides service to customers while the more long-term activity of
22		installing a permanent replacement for the failed transformer takes place. The mobile
23		substation is also available for maintenance needs as it can provide temporary service to
24		customers while their power transformer is taken out of service and maintained.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

CONFIDENTIAL (Attachment Only)

1	Reque	st IR-45:
2		
3	Refere	ence CI# 44981, 2C Port Hastings Transformer Replacements
4		
5	(a)	Indicate the reason for having two transformers under the current configuration
6		instead of one. Why replace the two transformers with one? Did NSPI conduct a
7		reliability assessment of the new configuration? If not why? If yes, please provide
8		the documentation.
9		
10	(b)	Please provide the one line diagrams of the existing and future configuration.
11		
12	(c)	Indicate whether NPSI conducted an economic analysis on the replacement of one
13		versus two transformers? If so, please provide the results of the analysis.
14		
15	Respon	nse IR-45:
16		
17	(a)	Two transformers were previously required at 2C because 69kV Line 5503 used to be in
18		service between 2C Port Hastings and 22C Cleveland; therefore, there was a need to have
19		both $69kV$ (transmission) and $25kV$ (distribution) voltages at 2C Port Hastings. Now that
20		Line 5503 has been retired, there is no longer a requirement for the 69kV source at 2C,
21		hence no need for the extra transformer. A review of the overall reliability impact of the
22		new configuration demonstrates an overall decrease in risk associated with the
23		simplification of the system from two units in series, to a single unit design.
24		
25	(b)	Confidential Attachment 1 illustrated the before and after single line for 2C Port
26		Hastings.
27		
28	(c)	The 138 to 69kV transformation is no longer required due to the retirement of L-5503. It
29		will be less expensive to purchase one transformer instead of two transformers. An
30		economic analysis was not conducted on the replacement of one versus two transformers.

SBA IR-45 Attachment 1 has been removed due to confidentiality.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Reque	est IR-46:
2		
3	Refere	ence CI# 48061 New Mobile Substation 69-25/12-4kV, 6 MVA
4		
5	(a)	Please provide the times where customers lost service due to the unavailability of a
6		back up to the existing 3P mobile substation in the last 5 years?
7		
8	(b)	Please provide all reliability criteria documentation that mandate the availability of
9		two 3P mobile substations in NSPI's area.
10		
11	(c)	NSPI states (page 824 of Exhibit N-1) that "Delaying the project will mean
12		customers supplied by this type of transformer are still exposed to the risk of a
13		prolonged power outage." What is the longest time the existing mobile substation
14		was used in the past 3 years for a maintenance outage? Can NPSI personnel
15		terminate maintenance early to free the existing mobile transformer so it can be
16		used to restore power for customers that have no service due to an unforeseen
17		contingency?
18		
19	Respon	nse IR-46:
20		
21	(a)	There are no instances of customers losing service due to unavailability of the 3P mobile
22		substation within the last five years. Nonetheless, an outage on one of the transformers
23		previously identified would likely be longer than necessary if the 3P mobile was installed
24		for maintenance and a suitable back-up was unavailable.
25		
26	(b)	There are no specific reliability criteria that would mandate two 3P mobile substations
27		within NS Power's area. Please refer to part (a).
28		
29		
2)	(c)	The longest time that the existing 3P mobile has been installed for a maintenance outage

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

the previously identified units failed, customers supplied from that substation could
 experience a 3-5 day outage depending how far along maintenance activities had
 progressed.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1	Reque	est IR-47:
2		
3	Refere	ence CI# 48066, 2016/2017 Substation Polychlorinated Biphenyl (PCB) Equipment
4	Remo	val Program
5		
6	(a)	Please explain why NSPI is proposing to replace PCB equipment where sampling is
7		not feasible. Provide the reasons for the inability for sampling the aforementioned
8		equipment.
9		
10	(b)	Was the schedule for replacement of the affected PCB equipment changed due to
11		the extension received on January 1, 2015? What was the schedule for replacing the
12		equipment before January 1, 2015 and what is the current schedule? Please provide
13		documentation for both.
14		
15	(c)	Provide the testing results for the 100 breakers that do not meet the new
16		Regulations. What is the constraint for not replacing more of the affected
17		equipment sooner?
18		
19	Respo	nse IR-47:
20		
21	(a)	Not all substation asset bushings have an oil sample port and, as a result, obtaining a
22		sample would involve removing the bushing from service and drilling into the side of the
23		bushing. In this case, obtaining a sample would destroy the bushing or significantly
24		compromise its integrity. In these situations, replacement of the equipment is
25		recommended.
26		
27	(b)	Yes, the schedule for replacement was affected by the extension that was received on
28		January 1, 2015. Prior to the extension, authorization was received to complete the
29		planned replacement of all equipment confirmed to contain a PCB concentration of 500

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

1		equipment which has a known PCB concentration of 50 mg/kg – 499 mg/kg must be
2		removed by December 31, 2025. ¹ Please refer to Attachment 1 and Attachment 2 for the
3		schedule up to December 31, 2014.
4		
5		Please refer to Attachment 3 for the remaining PCB items to be sampled. Anytime a
6		device is undergoing an out-of-service maintenance, if sampling is required it will be
7		completed at that time. To help make this effective, at the start of each year replacement
8		material is ordered to help ensure that when devices come out of service replacements
9		can occur. This out of service maintenance frequency is at most 8 years so therefore all
10		items that require sampling / replacement will be completed by the end of 2023.
11		
10		Places refer to Attachment 4 for the remaining PCD items to be replaced. Each men
12		Please refer to Attachment 4 for the remaining PCB items to be replaced. Each year
12 13		approximately 12 breakers (96 breakers in total) are selected for replacement based on
13		approximately 12 breakers (96 breakers in total) are selected for replacement based on
13 14		approximately 12 breakers (96 breakers in total) are selected for replacement based on risk and maintenance cycles. Transformer bushings are replaced as the transformer is
13 14 15		approximately 12 breakers (96 breakers in total) are selected for replacement based on risk and maintenance cycles. Transformer bushings are replaced as the transformer is taken out of service for maintenance and will all be replaced by the end of 2023 as they
13 14 15 16		approximately 12 breakers (96 breakers in total) are selected for replacement based on risk and maintenance cycles. Transformer bushings are replaced as the transformer is taken out of service for maintenance and will all be replaced by the end of 2023 as they are on an 8 year frequency. Each year approximately 40 bushings (304 in total) are
13 14 15 16 17	(c)	approximately 12 breakers (96 breakers in total) are selected for replacement based on risk and maintenance cycles. Transformer bushings are replaced as the transformer is taken out of service for maintenance and will all be replaced by the end of 2023 as they are on an 8 year frequency. Each year approximately 40 bushings (304 in total) are
13 14 15 16 17 18	(c)	approximately 12 breakers (96 breakers in total) are selected for replacement based on risk and maintenance cycles. Transformer bushings are replaced as the transformer is taken out of service for maintenance and will all be replaced by the end of 2023 as they are on an 8 year frequency. Each year approximately 40 bushings (304 in total) are replaced as the unit is out of service.
13 14 15 16 17 18 19	(c)	approximately 12 breakers (96 breakers in total) are selected for replacement based on risk and maintenance cycles. Transformer bushings are replaced as the transformer is taken out of service for maintenance and will all be replaced by the end of 2023 as they are on an 8 year frequency. Each year approximately 40 bushings (304 in total) are replaced as the unit is out of service. Please refer to Attachment 5, also provided electronically, which shows the PCB

¹ PCB Regulations, Section 16(1)(b)(ii).

2016 ACE SBA IR-47 Attachment 1 Page 1 of 40

nent Environnement Canada

Nova Scotia Power Inc. P.O. Box 910 Halifax, Nova Scotia B3J 2W5

20 April 2011 / 20 avril 2011

EXTENSION OF DECEMBER 31, 2009 END-OF-USE DATE FOR EQUIPMENT AND LIQUIDS CONTAINING PCBs Granted Under Subsection 17(2) of the *PCB Regulations*

PROLONGATION DE LA DATE DE FIN D'UTILISATION DU 31 DÉCEMBRE 2009 POUR DES PIÈCES D'ÉQUIPEMENT ET DES LIQUIDES QUI CONTIENNENT DES BPC Accordée en vertu du paragraphe 17(2) du *Règlement sur les BPC*

File Number / No. de dossier: 09/062/EXT-R

The Department of the Environment grants Nova Scotia Power Inc., Halifax, the extension requested in its application. The end-of-use date of the equipment and liquids used for their servicing described below is extended from December 31, 2009 to the dates indicated in the table below.

This extension is granted in accordance with subsection 17(2) of the *PCB Regulations*. The condition specified in subparagraph 17(2)(a)(i) of the Regulations and referred to in the application is met.

Le ministère de l'Environnement accorde à Nova Scotia Power Inc., Halifax, la prolongation exigée dans sa demande. La date de fin d'utilisation des pièces d'équipement et des liquides nécessaires à leur entretien décrits ci-dessous est reportée du 31 décembre 2009 aux dates indiquées au tableau cidessous.

Cette prolongation est accordée en vertu du paragraphe 17(2) du *Règlement sur les BPC*. La condition énoncée au sous-alinéa 17(2)a)(i) du Règlement et invoquée dans la demande est remplie.

Number of pieces of equipment /	Extension date/Date de
Nombre de pièces d'équipement	prolongation
1456	31 December 2010
1330	31 December 2011
828	31 December 2012
749	31 December 2013
831	31 December 2014
Total - 5194	

2016 ACE SBA IR-47 Attachment 1 Page 2 of 40

Environment Environnement Canada Canada

Condition referred to in the application for an extension / Condition invoquée dans la demande de prolongation

The equipment is being replaced with equipment that is engineered to order, and it is not technically feasible to replace the equipment on or before December 31, 2009. Les pièces d'équipement doivent être remplacées par des pièces d'équipement conçues et fabriquées sur mesure et il est techniquement impossible de le faire le 31 décembre 2009 ou avant cette date.

Applicant and person authorized to act on applicant's behalf Demandeur et personne autorisée à agir en son nom

Applicant/ Demandeur, 17(3)(a)

Nova Scotia Power Inc. P.O. Box 910, Halifax , Nova Scotia B3J 2W5

Person authorized to act on applicant's behalf/ Personne autorisée à agir au nom du demandeur, 17(3)(a)

Mr. Terry Toner (P) (902) 428-6744 (E) terry.toner@nspower.ca

Owner of equipment containing PCBs/ Propriétaire des pièces d'équipement contenant des BPC, 17(1)

Same as applicant above.

Description and location of equipment and liquids needed for their servicing / Description et emplacement des pièces d'équipement et des liquides nécessaires à leur entretien

See attached list of equipment for details, this list is part of the authorization / Voir la liste des pièces d'équipements annexée pour le détail, cette liste fait partie intégrante de l'autorisation

Type and function of the equipment/ Type et fonction de l'équipement, 17(3)(b)(i): 5,194 pieces of equipment in substations either transmitting power from generation units to large customer load centres at voltage levels of 69,000 volts or higher or distributing power to mostly residential and small industrial customers at 25,000 volts or less: 8 transformers, 4,546 bushings, 31 circuit breakers, 17 capacitors, 310 potential transformers (PT), 181 current transformers (CT) and 101 capacitance voltage transformer (CVT). See Table 1 below for details.

Page 2 of/de 40

2016 ACE SBA IR-47 Attachment 1 Page 3 of 40

Quantity of liquid (litres) containing PCBs in the equipment, 17(3)(b)(ii): Using the following liquid quantities per unit, all 5,194 pieces of equipment contain an estimated 157,775 Litres of liquid containing PCBs.

Five transformers x 200L/unit = 1600 L, three transformers x 110L/u = 330L, 4,546 bushings x 20 L/unit = 90,920 L, 31 circuit breakers x 200L/unit = 6,200 L, 17 capacitors x 5 L/unit = 85 L, 310 potential transformers (PT) x100 L/unit = 31,000 L, 181 current transformers (CT) x100L/unit = 18,100 L and 101 capacitance voltage transformer (CVT) x100L/unit = 10,100 L.

Quantity of liquid (litres) containing PCBs needed for its servicing/ Quantité de liquide (litres) contenant des BPC nécessaire à son entretien, 17(3)(b)(ii): No additional liquids are kept for the purpose of servicing the working equipment.

Concentration of PCBs (mg/kg) in the liquid/ Concentration de BPC (mg/kg) dans le liquide, 17(3)(b)(iii): An average estimated PCB concentration of 647 mg/kg is used, based on the PCB concentration of known PCB contaminated equipment.

Quantity of PCBs (kg) in the liquid/ Quantité de BPC (kg) dans le liquide/, 17(3)(b)(iv): As indicated in table below the total estimated quantity of PCBs in the liquid for all 5,194 pieces of equipment is 92.893 kg. An average estimated density of 0.91 kg/L is used, based on known PCB contaminated equipment.

Name-plate description, manufacturer's serial number/ Plaque d'identification et numéro de série, 17(3)(b)(v): Name-plate description and serial numbers is not provided due to the number of equipment and inaccessibility at the moment.

Unique identification number on the label required under section 29/ Numéro d'identification unique sur l'étiquette conformément à l'article 29, 17(3)(c): See column entitled "Unique Identification Number" in the table attached below. All the equipment identified in the Application for Extension is in use and has an unknown PCB concentration. The labeling, as required under Section 29, must have a unique identification number and contain the statement "ATTENTION – contains 50 mg/kg or more of PCBs / contient 50 mg/kg ou plus de BPC". NSPI will apply this label within 30 days, as appropriate, when information specific to the presence of PCB is available.

Place where the equipment is located/ Endroit où se trouve la pièce d'équipement, 17(3)(d): The equipment is located in specific substations that are identified in the Table below.

Information demonstrating that it is not technically feasible to replace the equipment with equipment that is engineered to order on or before December 31, 2009/ Renseignements qui établissent qu'il est techniquement impossible de remplacer la pièce d'équipement conçue et fabriquée sur mesure le 31 décembre 2009 ou avant cette date, 17(3)(e): The information provided in the application for an extension in accordance with this section indicate that the applicant is meeting the condition specified in subparagraph 17(2)a)(i).

Necessary measures taken to minimize or eliminate any harmful effect of the PCBs that are contained in the equipment on the environment and human health/ Mesures nécessaires prises

Page 3 of/de 40

2016 ACE SBA IR-47 Attachment 1 Page 4 of 40

ent Environnement Canada

pour éliminer ou atténuer tout effet nocif des BPC contenus dans la pièce d'équipement sur l'environnement et la santé humaine, 17(3)(f): The measures are indicated in the application for an extension.

Plan for ending the use of equipment by the end of the extension along with timelines/ Plan et échéancier mis en oeuvre afin que l'utilisation de la pièce d'équipement cesse à la fin de la prolongation, 17(3)(g): Provided in the application for an extension. The 5,194 pieces of equipment will be removed by December 31, 2014.

Plan for inspecting equipment/ Plan d'inspection de la pièce d'équipement, 17(3)(h): Monthly inspections will be conducted for the period of the extension for damage that could lead to the release of PCBs.

Please take note that it is your responsibility as the owner or the person who controls or possesses the equipment and liquids containing PCBs to ensure that the requirements set out in the *PCB Regulations* made pursuant to CEPA 1999 are complied with at all time. Veuillez noter qu'en tant que propriétaire ou personne qui contrôle ou possède les pièces d'équipement et des liquides contenant des BPC il vous incombe de veiller à ce que les exigences établies dans le *Règlement sur les BPC* et dans la LCPE (1999) soient remplies en tout temps.

Signed for and on behalf of the Minister of the Environment / Signé au nom du ministre de l'Environnement

Tim Gardiner Director / Directeur Waste Reduction & Management / Réduction et gestion des déchets Public and Resources Sectors / Secteurs publics et des ressources Environment Canada / Environnement Canada

Table 1

Substation Location	Location (17(3)(d))	Unique Identification Number (Labels) (17(3)(c)&29)	Quantity of Liquid containing PCBs (L) (17(3)(b)(ii))	*Concentration of PCB (mg/kg) (17(3)(b)(iii))	**Quantity of PCB in the liquid (kg) (17(3)(b)(iv))	Type and function of equipment (17(3)(b)(i))	Number of type of Equipment	End-of-Use Date
Metro								
Region								
Aerotech	20 Old Guysborough Road (Off Aerotech Drive)	127H	180	647	0.106	Bushing	9	31-Dec-10
			180	647	0.106	Bushing	9	31-Dec-11
Akerley Blvd	Akerlyey Boulevard, Dartmouth (Half Way Up)	124H	360	647	0.212	Bushing	18	31-Dec-10
	• /		140	647	0.082	Bushing	7	31-Dec-14
Albro Lake	18 Sea King Drive, Dartmouth	62H	140	647	0.082	Bushing	7	31-Dec-13
Armdale	7144 Chebucto Road, Halifax	2H	360	647	0.212	Bushing	18	31-Dec-10
Beaufort	Across From 1069 Beaufort Avenue, Halifax	7H	400	647	0.236	Breaker	2	31-Dec-11
			400	647	0.236	Breaker	2	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-14

Page 5 of/de 40

Bedford	7 Balsam Rd, (Off	100H	140	647	0.082	Bushing	7	31-Dec-13
	Dartmouth Road, Next To Railway)							
Brushy Hill	379 Brushy Hill Road, Mount Uniacke	120H	580	647	0.341	Bushing	29	31-Dec-10
			1700	647	1.001	CVT	17	31-Dec-10
			200	647	0.118	Bushing	10	31-Dec-11
			20	647	0.012	Bushing	1	31-Dec-13
			200	647	0.118	Bushing	10	31-Dec-14
			100	647	0.059	PT	1	31-Dec-14
Burnside Gas Turbine Plant	2 Vidito Drive, Dartmouth	14H	200	647	0.118	Bushing	10	31-Dec-11
			200	647	0.118	Bushing	10	31-Dec-13
Burnside Substation	2 Vidito Drive, Dartmouth	108H	100	647	0.059	Bushing	5	31-Dec-10
			300	647	0.177	Bushing	15	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			440	647	0.259	Bushing	22	31-Dec-13
			140	647	0.082	Bushing	7	31-Dec-14
			100	647	0.059	CVT	1	31-Dec-11
			500	647	0.294	PT	5	31-Dec-12
			100	647	0.059	PT	1	31-Dec-14
Cobequid Road	89 Cobequid Road, Sackville	101H	740	647	0.436	Bushing	37	31-Dec-10

Page 6 of/de 40

Environment Environnement Canada

			360	647	0.212	Bushing	18	31-Dec-11
			140	647	0.082	Bushing	7	31-Dec-12
			20	647	0.012	Cap Bank	4	31-Dec-12
			100	647	0.059	PT	1	31-Dec-13
Dartmouth East	933 Hwy #7, Dartmouth	113H	10	647	0.006	Cap Bank	2	31-Dec-10
			1500	647	0.883	СТ	15	31-Dec-10
			100	647	0.059	CVT	1	31-Dec-10
			700	647	0.412	PT	7	31-Dec-10
Dockyard (New)	Near The Centre Gate Barrington Street, Halifax	630H	120	647	0.071	Bushing	6	31-Dec-11
Dockyard Recloser North	Near The South Gate Barrington Street, Halifax	11H	120	647	0.071	Bushing	6	31-Dec-10
Elmsdale	47 Elmsdale Road, Elmsdale	82V	240	647	0.141	Bushing	12	31-Dec-10
			240	647	0.141	Bushing	12	31-Dec-11
			260	647	0.153	Bushing	13	31-Dec-13
			5	647	0.003	Cap Bank	1	31-Dec-13
			100	647	0.059	CVT	1	31-Dec-13
			100	647	0.059	PT	1	31-Dec-13
Fairview	3588 Percy Street, Halifax	8H	140	647	0.082	Bushing	7	31-Dec-11
Farrell Street	288 Windmill Road, Dartmouth	99H	240	647	0.141	Bushing	12	31-Dec-10

Page 7 of/de 40

Environment Environnement Canada

Cana	da Canada			- <i>i</i> - 1				
			480	647	0.283	Bushing	24	31-Dec-13
			500	647	0.294	Bushing	25	31-Dec-14
			100	647	0.059	PT	1	31-Dec-11
			200	647	0.118	PT	2	31-Dec-13
Goodwood Wind Turbine		136H	120	647	0.071	Bushing	6	31-Dec-10
Halifax Shipyard Recloser	Main Gate Shipyards Barrington Street, Halifax	115H	120	647	0.071	Bushing	6	31-Dec-12
Imperial Oil	581 Pleasant Street, Dartmouth	58H	240	647	0.141	Bushing	12	31-Dec-11
			380	647	0.224	Bushing	19	31-Dec-12
			240	647	0.141	Bushing	12	31-Dec-13
			5	647	0.003	Cap Bank	1	31-Dec-12
			300	647	0.177	СТ	3	31-Dec-11
			600	647	0.353	PT	6	31-Dec-14
Kearney Lake Road	160 Kearney Lake Road, Halifax	129H	360	647	0.212	Bushing	18	31-Dec-12
Kempt Road	3184 Kempt Road, Halifax	104H	960	647	0.565	Bushing	48	31-Dec-10
			740	647	0.436	Bushing	37	31-Dec-11
			500	647	0.294	Bushing	25	31-Dec-12
			10	647	0.006	Cap Bank	2	31-Dec-12
			700	647	0.412	PT	7	31-Dec-13

Page 8 of/de 40

Environment Environnement Canada Canada

Lakeside	39 Lakeside Park Drive	103H	480	647	0.283	Bushing	24	31-Dec-10
			600	647	0.353	CVT	6	31-Dec-10
			300	647	0.177	PT	3	31-Dec-10
			120	647	0.071	Bushing	6	31-Dec-11
			360	647	0.212	Bushing	18	31-Dec-13
			680	647	0.400	Bushing	34	31-Dec-14
			5	647	0.003	Cap Bank	1	31-Dec-13
			100	647	0.059	PT	1	31-Dec-13
			200	647	0.118	PT	2	31-Dec-14
			200	647	0.118	St. Service TRN	1	31-Dec-14
Lucasville Road	249 Lucasville Road	131H	120	647	0.071	Bushing	6	31-Dec-10
			120	647	0.071	Bushing	6	31-Dec-11
			240	647	0.141	Bushing	12	31-Dec-12
Maple Street	1 Maple Street, Dartmouth	54H	480	647	0.283	Bushing	24	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-11
Marginal Road	Behind 730 Marginal Road, Halifax	4H	120	647	0.071	Bushing	6	31-Dec-11
Mobile 5P	not applicable	5P	200	647	0.118	Bushing	10	31-Dec-11
Musquodob oit Harbour	7 Scott's Lake Road	87H	360	647	0.212	Bushing	18	31-Dec-10
Penhorn Dartmouth	24 Prentice Lane, Dartmouth	48H	140	647	0.082	Bushing	7	31-Dec-11

Page 9 of/de 40

1.5		
	200	
	1.1	

Environment Environnement

Porters	4496 Hwy #7	126H	360	647	0.212	Bushing	18	31-Dec-10
Lake Sackville	Next To 242 Bicentennial Hwy (South of Rifle Range)	90H	1340	647	0.789	Bushing	67	31-Dec-10
			300	647	0.177	СТ	3	31-Dec-10
			1000	647	0.589	PT	10	31-Dec-10
			440	647	0.259	Bushing	22	31-Dec-11
			140	647	0.082	Bushing	7	31-Dec-13
			80	647	0.047	Bushing	4	31-Dec-14
			5	647	0.003	Cap Bank	1	31-Dec-13
			600	647	0.353	PT	6	31-Dec-11
			300	647	0.177	PT	3	31-Dec-13
Spryfield	13 Sussex Street, Spryfield	20H	140	647	0.082	Bushing	7	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-13
Tidewater Hydro	Next To 5546 Hwy #3, St. Margaret's Bay	92H	420	647	0.247	Bushing	21	31-Dec-10
Tufts Cove	315 Windmill Road, Dartmouth	91H	1180	647	0.695	Bushing	59	31-Dec-10
			700	647	0.412	PT	7	31-Dec-10
			360	647	0.212	Bushing	18	31-Dec-11
			1300	647	0.765	Bushing	65	31-Dec-12
			940	647	0.553	Bushing	47	31-Dec-13
			140	647	0.082	Bushing	7	31-Dec-14

Page 10 of/de 40

Environment Environnement Canada

			1900	647	1.119	PT	19	31-Dec-11
			100	647	0.059	PT	1	31-Dec-12
			900	647	0.530	PT	9	31-Dec-13
			300	647	0.177	PT	3	31-Dec-14
V G Hospital	Across From 5778 South Street, Halifax	10H	140	647	0.082	Bushing	7	31-Dec-11
			140	647	0.082	Bushing	7	31-Dec-13
Water Street	1233 Lower Water Street, Halifax	1H	280	647	0.165	Bushing	14	31-Dec-14
			10	647	0.006	Cap Bank	2	31-Dec-13
			600	647	0.353	PT	6	31-Dec-14
Woodlawn Darmouth	59 Mount Edward Road, Dartmouth	40H	480	647	0.283	Bushing	24	31-Dec-10
			120	647	0.071	Bushing	6	31-Dec-11
			140	647	0.082	Bushing	7	31-Dec-14
Yale Street	6249 Yale Street, Halifax	9H	140	647	0.082	Bushing	7	31-Dec-14
Northeast Region								
Abercrombi e	2016 Granton, Abercrombie Drive, Abercrombie	54N	200	647	0.118	PT	2	31-Dec-10
			100	647	0.059	СТ	1	31-Dec-14
Black River Road	45-38.074N / 064- 04.499W	6N	240	647	0.141	Bushing	12	31-Dec-11
			260	647	0.153	Bushing	13	31-Dec-14

Page 11 of/de 40

Braemore	45-37.405N /	6C	360	647	0.212	Bushing	18	31-Dec-11
	062.00.632W							
Bridge Avenue	26 Bridge Avenue, Stellarton	62N	120	647	0.071	Bushing	6	31-Dec-12
			120	647	0.071	Bushing	6	31-Dec-13
Brookfield Wind Turbine	45-16-52N 63-15-16W	86N	120	647	0.071	Bushing	6	31-Dec-10
Brownell Avenue	45-50.258N / 064- 12.625W	17N	800	647	0.471	Breaker	4	31-Dec-11
Brown's Ave	45-36.298N / 062- 38.458W	57N	140	647	0.082	Bushing	7	31-Dec-14
Canso Town	45-20.246N / 060- 59.923W	19C	60	647	0.035	Bushing	3	31-Dec-13
Church Street Amherst	45-49.368N / 064- 11.303W	22N	120	647	0.071	Bushing	6	31-Dec-11
Cloverville	45-37.537N / 061- 59.369W	7C	360	647	0.212	Bushing	18	31-Dec-14
College Sub	45-36.830N / 061- 59.804W	8C	40	647	0.024	Bushing	2	31-Dec-14
Debert	45-26.411N / 063- 27.187W	81N	260	647	0.153	Bushing	13	31-Dec-12
			120	647	0.071	Bushing	6	31-Dec-14
			100	647	0.059	PT	1	31-Dec-11
Dickie Brook Hydro	17 Mountain Road, Dorts Cove	24C	220	647	0.130	Bushing	11	31-Dec-10
			260	647	0.153	Bushing	13	31-Dec-11

Page 12 of/de 40

Environment Environnement Canada Canada

Canad	da Canada	1		I				
			140	647	0.082	Bushing	7	31-Dec-13
			300	647	0.177	PT	3	31-Dec-11
Domtar Sifto Salt	45-47.016N / 064- 13.947W	75N	140	647	0.082	Bushing	7	31-Dec-11
Drummond Road	45-33.344N / 062- 42.845W	519N	140	647	0.082	Bushing	7	31-Dec-14
Duchess Ave	45-37.133N / 062- 37.930W	543N	120	647	0.071	Bushing	6	31-Dec-14
Durham	45- 37.425N / 062- 48.401W	503N	640	647	0.377	Bushing	32	31-Dec-14
Elm Street	45-35.576N / 062- 39.317W	532N	140	647	0.082	Bushing	7	31-Dec-14
Fitzpatricks M	Iountain Wind Turbine	85N	120	647	0.071	Bushing	6	31-Dec-10
Granville	45-34.743N / 062- 38.384W	528N	240	647	0.141	Bushing	12	31-Dec-14
Guysborough	Intervale	78C	120	647	0.071	Bushing	6	31-Dec-12
Haliburton	45-40.470N / 062- 43.887W	56N	240	647	0.141	Bushing	12	31-Dec-11
			140	647	0.082	Bushing	7	31-Dec-12
Hickman	45-49.077N / 064- 12.617W	19N	100	647	0.059	PT	1	31-Dec-14
	12.017 **		100	647	0.059	PT	1	31-Dec-13
Station Hopewell	Elgin Road (45-27.275N / 062- 40.083W)	79N	100					

Page 13 of/de 40

Indian	45-08.005N / 061-	87C	120	647	0.071	Bushing	6	31-Dec-11
Harbour Lake	52.745W					Duoimig	Ũ	
Joggins	45-41.655N / 064- 26.179W	26N	120	647	0.071	Bushing	6	31-Dec-12
Lochaber Road	5640 Highway 7, Hillsdale	4C	680	647	0.400	Bushing	34	31-Dec-10
			300	647	0.177	PT	3	31-Dec-10
			260	647	0.153	Bushing	13	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			300	647	0.177	PT	3	31-Dec-12
Lourdes	45-34.551N / 062- 39.334W	64N	140	647	0.082	Bushing	7	31-Dec-14
Maccan	431 Harrison Lake Road Lower MacCain	30N	280	647	0.165	Bushing	14	31-Dec-10
			120	647	0.071	Bushing	6	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			120	647	0.071	Bushing	6	31-Dec-13
			40	647	0.024	Bushing	2	31-Dec-14
			300	647	0.177	СТ	3	31-Dec-11
			300	647	0.177	СТ	3	31-Dec-12
			100	647	0.059	CVT	1	31-Dec-11
			100	647	0.059	CVT	1	31-Dec-12
			100	647	0.059	PT	1	31-Dec-11

Page 14 of/de 40

Malay Falls Hydro	307 Lochaber Mines Road, Maley Falls	95H	120	647	0.071	Bushing	6	31-Dec-12
-			300	647	0.177	PT	3	31-Dec-11
Mobile 3P	not applicable	3P	220	647	0.130	Bushing	11	31-Dec-11
Northport	45-55.691N / 063- 52.146W	647N	240	647	0.141	Bushing	12	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-14
Old Debert	45-26.053N / 063- 27.203W	5N	120	647	0.071	Bushing	6	31-Dec-11
			140	647	0.082	Bushing	7	31-Dec-14
Onslow 138/69kV	92 Meeting House Road, Onslow	1N	600	647	0.353	Breaker	3	31-Dec-10
			180	647	0.106	Bushing	9	31-Dec-10
			2200	647	1.295	СТ	22	31-Dec-10
			300	647	0.177	PT	3	31-Dec-10
			1200	647	0.707	Breaker	6	31-Dec-12
			1100	647	0.648	Bushing	55	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			200	647	0.118	Bushing	10	31-Dec-14
			5	647	0.003	Cap Bank	1	31-Dec-11
			400	647	0.236	СТ	4	31-Dec-11
			100	647	0.059	CVT	1	31-Dec-12
			100	647	0.059	CVT	1	31-Dec-13
			100	647	0.059	CVT	1	31-Dec-14

Page 15 of/de 40

Environment Environnement Canada

			300	647	0.177	PT	3	31-Dec-11
			100	647	0.059	PT	1	31-Dec-12
			300	647	0.177	PT	3	31-Dec-13
Onslow EHV	133 Old Tatamagouche Road, Onslow	67N	80	647	0.047	Bushing	4	31-Dec-10
			2000	647	1.178	CVT	20	31-Dec-10
			200	647	0.118	Bushing	10	31-Dec-11
			360	647	0.212	Bushing	16	31-Dec-14
			300	647	0.177	СТ	3	31-Dec-11
			1500	647	0.883	СТ	15	31-Dec-12
			900	647	0.530	СТ	9	31-Dec-14
			700	647	0.412	PT	7	31-Dec-11
			600	647	0.353	PT	6	31-Dec-14
Oxford Junction	45-41.778N / 063- 53.121W	3N	200	647	0.118	Bushing	10	31-Dec-11
Park Street	45-49.265N / 064- 12.625W	20N	240	647	0.141	Bushing	12	31-Dec-11
			60	647	0.035	Bushing	3	31-Dec-12
Parrsboro	Prospect Street (45-25.552N / 064- 19.155W)	37N	420	647	0.247	Bushing	21	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
Pictou Town	Palmerston Road, Pictou (45- 40.949N / 062-42.574W)	55N	140	647	0.082	Bushing	7	31-Dec-14

Page 16 of/de 40

1.5		
	100	
	1.0	

Environment Environnement

Powell		535N	360	647	0.212	Bushing	18	31-Dec-13
Road								
Pugwash	2825 Crowley Road, Pugwash	7N	80	647	0.047	Bushing	4	31-Dec-10
			240	647	0.141	Bushing	12	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-14
River Hebert	45-41.687N / 064- 22.604W	65N	260	647	0.153	Bushing	13	31-Dec-14
River John V	Wind Turbine	88N	120	647	0.071	Bushing	6	31-Dec-10
Ruth Falls Hydro	116 Ruth Falls Road, Sheet Harbour	96H	120	647	0.071	Bushing	6	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-11
			140	647	0.082	Bushing	7	31-Dec-12
			20	647	0.012	Bushing	1	31-Dec-14
			300	647	0.177	PT	3	31-Dec-13
South Lochaber	45-23.000N / 062- 02.427W	514C	120	647	0.071	Bushing	6	31-Dec-13
			140	647	0.082	Bushing	7	31-Dec-14
Springhill	83 Salt Springs Road, Salt Spring Station	74N	120	647	0.071	Bushing	6	31-Dec-10
			120	647	0.071	Bushing	6	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-14

Page 17 of/de 40

Environment Environnement Canada

			100	647	0.059	CVT	1	31-Dec-11
			200	647	0.118	CVT	2	31-Dec-12
Springhill Wind Turbine	45-36-64N 64-01-80W	83N	120	647	0.071	Bushing	6	31-Dec-10
Stewiacke	45-08.971N / 063- 21.103W	16N	40	647	0.024	Bushing	2	31-Dec-10
			220	647	0.130	Bushing	11	31-Dec-12
Tatamagou che	45-42.734N / 063- 18.500W	4N	240	647	0.141	Bushing	12	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-13
Toney River	45-45.051N / 062- 53.965W	512N	780	647	0.459	Bushing	39	31-Dec-14
Trafalgar	45-17.480N / 062- 39.334W	89H	100	647	0.059	Bushing	5	31-Dec-10
			100	647	0.059	Bushing	5	31-Dec-11
			40	647	0.024	Bushing	2	31-Dec-13
Trenton Generating Station	45-37.342N / 062- 38.911W	50N	600	647	0.353	Breaker	3	31-Dec-10
			660	647	0.389	Bushing	33	31-Dec-10
			400	647	0.236	PT	4	31-Dec-10
			600	647	0.353	Breaker	3	31-Dec-11
			800	647	0.471	Bushing	40	31-Dec-11
			400	647	0.236	Bushing	20	31-Dec-12

Page 18 of/de 40

Environment Environnement Canada

Cana	da Canada		360	647	0.212	Bushing	18	31-Dec-13
						<u> </u>		
			600	647	0.353	СТ	6	31-Dec-12
			600	647	0.353	СТ	6	31-Dec-14
			100	647	0.059	CVT	1	31-Dec-11
			100	647	0.059	CVT	1	31-Dec-12
			100	647	0.059	CVT	1	31-Dec-14
			300	647	0.177	PT	3	31-Dec-11
			300	647	0.177	PT	3	31-Dec-14
Upper Musquodob oit	83 Watson Hill Road, Upper Musquodoboit	88H	120	647	0.071	Bushing	6	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-13
			100	647	0.059	PT	1	31-Dec-13
Upper Stewiacke	45-13.365N / 062- 59.271W	619N	140	647	0.082	Bushing	7	31-Dec-13
Whitehead	45-14.847N / 061- 11.383W	516C	140	647	0.082	Bushing	7	31-Dec-14
Willow Lane Truro	347 Willow Street, Truro (45-21.386N / 063- 17.620W)	15N	140	647	0.082	Bushing	7	31-Dec-12
			260	647	0.153	Bushing	13	31-Dec-14
			200	647	0.118	PT	2	31-Dec-11
Sydney Region								
Aberdeen	11541 Hwy 105, Aberdeen	9C	40	647	0.024	Bushing	2	31-Dec-11

Page 19 of/de 40

Environment Environnement Canada

Cana	ida Canada		100	647	0.059	Bushing	5	31-Dec-13
						č		
Albert Bridge	3898 Louisbourg Hwy, Albert Bridge	57S	240	647	0.141	Bushing	12	31-Dec-12
			60	647	0.035	Bushing	3	31-Dec-13
Arichat	Hwy 320, Arichat	10C	120	647	0.071	Bushing	6	31-Dec-12
			120	647	0.071	Bushing	6	31-Dec-13
Cape North	82 Bay St. Lawrence Road, Cape North	79S	120	647	0.071	Bushing	6	31-Dec-11
Cape Porcupine	Hwy 344, Aulds Cove	100C	300	647	0.177	Bushing	15	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-13
Cleveland	Cleveland	22C	240	647	0.141	Bushing	12	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-13
			140	647	0.082	Bushing	7	31-Dec-14
Coady Road		69C	120	647	0.071	Bushing	6	31-Dec-11
Gannon Road	82 Mapleview Drive, North Sydney	3S	240	647	0.141	Bushing	12	31-Dec-10
			360	647	0.212	Bushing	18	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			240	647	0.141	Bushing	12	31-Dec-13
			200	647	0.118	Bushing	10	31-Dec-14
			500	647	0.294	CVT	5	31-Dec-14
			300	647	0.177	PT	3	31-Dec-12

Page 20 of/de 40

			300	647	0.177	PT	3	31-Dec-13
Glen Tosh	4898 Hwy 105, South Haven	5S	100	647	0.059	Bushing	5	31-Dec-10
			1200	647	0.707	PT	12	31-Dec-10
			260	647	0.153	Bushing	13	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-13
Grand Etang	46-33-80N 61-02-88W	112C	120	647	0.071	Bushing	6	31-Dec-10
Keltic Drive	396 Keltic Drive, Westmount	11S	240	647	0.141	Bushing	12	31-Dec-10
			20	647	0.012	Bushing	1	31-Dec-14
Lingan 138/230 kV	2599 Hinchey Avenue, New Waterford	88S	300	647	0.177	PT	3	31-Dec-10
			200	647	0.118	Bushing	10	31-Dec-13
			200	647	0.118	Bushing	10	31-Dec-14
			300	647	0.177	PT	3	31-Dec-11
Lingan Generating Station	2599 Hinchey Avenue, New Waterford	87S	720	647	0.424	Bushing	36	31-Dec-11
			200	647	0.118	Bushing	10	31-Dec-12
Lingan Mine	2812 Hinchy Avenue, New Waterford	80S	240	647	0.141	Bushing	12	31-Dec-10
Margaree Center	Lat 46.339230 Long - 60.995577	559C	120	647	0.071	Bushing	6	31-Dec-13
Margaree Valley	Lat 46.346489 Long - 60.982469	568C	120	647	0.071	Bushing	6	31-Dec-11

Page 21 of/de 40

Environment Environnement

Mobile 6P	not applicable	6P	200	647	0.118	Bushing	10	31-Dec-10
			200	647	0.118	Breaker	1	31-Dec-11
New Page	120 Pulp Mill Road, Point Tupper	47C	600	647	0.353	CVT	6	31-Dec-10
			100	647	0.059	PT	1	31-Dec-10
			160	647	0.094	Bushing	8	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-13
			400	647	0.236	Bushing	20	31-Dec-14
			200	647	0.118	PT	2	31-Dec-12
			200	647	0.118	PT	2	31-Dec-13
			100	647	0.059	PT	1	31-Dec-14
New Waterford	635 Wanda Lane, New Waterford	15S	240	647	0.141	Bushing	12	31-Dec-12
Petit de Grat		14C	120	647	0.071	Bushing	6	31-Dec-13
Point Aconi Fresh Water Pump	805 Prince Mine Road, Millville	102S	60	647	0.035	Bushing	3	31-Dec-14
Point Aconi Generating Station	1800 Prince Mine Road	89S	60	647	0.035	Bushing	3	31-Dec-10
Point Tupper	4137 Port Malcolm Road, Point Tupper	1C	600	647	0.353	СТ	6	31-Dec-10
			200	647	0.118	Breaker	1	31-Dec-11
			600	647	0.353	Bushing	30	31-Dec-11

Page 22 of/de 40

Environment Environnement Canada

	ada Canada		120	647	0.071	Bushing	6	31-Dec-12
						-		
			240	647	0.141	Bushing	12	31-Dec-14
			300	647	0.177	PT	3	31-Dec-14
Point Tupper Generating Station	4137 Port Malcolm Road, Point Tupper	1C	220	647	0.130	Bushing	11	31-Dec-10
			340	647	0.200	Bushing	17	31-Dec-11
			60	647	0.035	Bushing	3	31-Dec-12
			80	647	0.047	Bushing	4	31-Dec-14
Point Tupper Wind Turbine	45-34-80N 61-20-24W	117C	120	647	0.071	Bushing	6	31-Dec-10
Port Caledonia Wind Turbine	46-11-49N 59-53-37W	108S	120	647	0.071	Bushing	6	31-Dec-10
Port Hastings	257 Hwy 105, Port Hastings	2C	280	647	0.165	Bushing	14	31-Dec-10
			300	647	0.177	СТ	3	31-Dec-10
			900	647	0.530	CVT	9	31-Dec-10
			400	647	0.236	St. Service TRN	2	31-Dec-10
			1200	647	0.707	Bushing	60	31-Dec-11
			140	647	0.082	Bushing	7	31-Dec-12

Page 23 of/de 40

Environment Environnement Canada

Cana	ada Canada		260	647	0.153	Bushing	13	31-Dec-13
							15	
			180	647	0.106	Bushing	9	31-Dec-14
			600	647	0.353	СТ	6	31-Dec-11
			300	647	0.177	СТ	3	31-Dec-13
			100	647	0.059	CVT	1	31-Dec-11
			400	647	0.236	CVT	4	31-Dec-12
			700	647	0.412	PT	7	31-Dec-11
			100	647	0.059	PT	1	31-Dec-12
Reserve Street	214 Reserve Street, Glace Bay	81S	120	647	0.071	Bushing	6	31-Dec-11
			140	647	0.082	Bushing	7	31-Dec-13
			140	647	0.082	Bushing	7	31-Dec-14
South Lake	Wind Mill	95S	120	647	0.071	Bushing	6	31-Dec-14
Southwest Margaree	19924 Highway 19, Southwest Margree	58C	240	647	0.141	Bushing	12	31-Dec-12
			60	647	0.035	Bushing	3	31-Dec-13
Terrace Street	318 Holly Street, Sydney	6S	140	647	0.082	Bushing	7	31-Dec-10
Townsend Street	239 Townsend Street, Sydney	4S	140	647	0.082	Bushing	7	31-Dec-11
			500	647	0.294	Bushing	25	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-13
			300	647	0.177	PT	3	31-Dec-11

Page 24 of/de 40

Environment Environnement Canada Canada

Victoria	1054/1053 Grand Lake	2S	960	647	0.565	Bushing	48	31-Dec-10
Junction	Road		1100	647	0.648	PT	11	31-Dec-10
			1020	647	0.601	Bushing	51	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			240	647	0.141	Bushing	12	31-Dec-13
			420	647	0.247	Bushing	21	31-Dec-14
			300	647	0.177	СТ	3	31-Dec-11
			300	647	0.177	СТ	3	31-Dec-13
			200	647	0.118	CVT	2	31-Dec-11
			100	647	0.059	CVT	1	31-Dec-13
			100	647	0.059	CVT	1	31-Dec-14
			300	647	0.177	PT	3	31-Dec-13
			400	647	0.236	PT	4	31-Dec-14
Victoria Junction Distribution	1047 Grand Lake Road	84S	60	647	0.035	Bushing	3	31-Dec-11
Victoria Junction G.T.	1075 Grand Lake Road	83S	120	647	0.071	Bushing	6	31-Dec-11
Whitney	515 Lingan Road, Sydney	82S	60	647	0.035	Bushing	3	31-Dec-11
Whycocoma gh	103 Hwy 252, Whycocomagh	67C	120	647	0.071	Bushing	6	31-Dec-10
			300	647	0.177	PT	3	31-Dec-10

Page 25 of/de 40

Environment Environnement

Cana								
			180	647	0.106	Bushing	9	31-Dec-11
			240	647	0.141	Bushing	12	31-Dec-12
			240	647	0.141	Bushing	12	31-Dec-13
			600	647	0.353	СТ	6	31-Dec-11
Woodbine	1510 Morley Road, Sandfield	101S	400	647	0.236	PT	4	31-Dec-11
			100	647	0.059	PT	1	31-Dec-13
Wreck Cove Hydro	42338 Cabot Trail, Birch Plains	85S	380	647	0.224	Bushing	19	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-13
			200	647	0.118	CVT	2	31-Dec-14
			300	647	0.177	PT	3	31-Dec-11
			100	647	0.059	PT	1	31-Dec-13
			100	647	0.059	PT	1	31-Dec-14
West Regior	- Valley							
Acadia University	79 University Avenue, Wolfville	45V	120	647	0.071	Bushing	6	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-13
Annapolis Royal Hydro	236 Prince Albert Road, Annapolis	81V	60	647	0.035	Bushing	3	31-Dec-10
			100	647	0.059	PT	1	31-Dec-10
			80	647	0.047	Bushing	4	31-Dec-14

Page 26 of/de 40

Environment Environnement Canada Canada

Cana		4) /	0.40	0.47	0.4.44	Duching	40	04 D = 40
Avon No. 1 Hydro Station	2819 Hwy 14, Vaughan	1V	240	647	0.141	Bushing	12	31-Dec-10
Bridgetown Rural	288 Brickyard Rd. Bridgetown	70V	240	647	0.141	Bushing	12	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-13
Canaan Road	1107 White Rock Road, White Rock	43V	600	647	0.353	Breaker	3	31-Dec-10
			360	647	0.212	Bushing	18	31-Dec-10
			300	647	0.177	СТ	3	31-Dec-10
			200	647	0.118	PT	2	31-Dec-10
			160	647	0.094	Bushing	8	31-Dec-11
			300	647	0.177	СТ	3	31-Dec-11
			300	647	0.177	СТ	3	31-Dec-12
			300	647	0.177	PT	3	31-Dec-11
Conway	59 Flat Iron Road, Conway	77V	140	647	0.082	Bushing	7	31-Dec-11
			480	647	0.283	Bushing	24	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-14
			300	647	0.177	СТ	3	31-Dec-14
Cornwallis	Cornwallis Industrial Park, Cornwallis	74V	120	647	0.071	Bushing	6	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-11
East Ferry	East Ferry	509V	240	647	0.141	Bushing	12	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-14

Page 27 of/de 40

Falmouth	da Canada 1370 Bog Road,	35V	120	647	0.071	Bushing	6	31-Dec-10
Faimouth	Falmouth	55 V	120	047	0.071	Busining	0	31-Dec-10
			260	647	0.153	Bushing	13	31-Dec-13
Five Points	155 Rand Street, Hantsport	20V	320	647	0.188	Bushing	16	31-Dec-10
			260	647	0.153	Bushing	13	31-Dec-14
			300	647	0.177	СТ	3	31-Dec-14
			300	647	0.177	PT	3	31-Dec-11
			100	647	0.059	PT	1	31-Dec-14
Fourth Lake Hydro	Fourth Lake	91V	100	647	0.059	CVT	1	31-Dec-14
Greenwood Village	682 Central Avenue, Greenwood	64V	360	647	0.212	Bushing	18	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-14
Gulch Hydro	143 River Road, Bear River	13V	160	647	0.094	Bushing	8	31-Dec-10
			120	647	0.071	Bushing	6	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-13
			140	647	0.082	Bushing	7	31-Dec-14
Hells's Gate Hydro	109 Hells Gate Road, White Rock	3V	140	647	0.082	Bushing	7	31-Dec-10
			200	647	0.118	PT	2	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-14
			300	647	0.177	СТ	3	31-Dec-14
Hillaton	1250 Saxon Street, Hillaton	36V	240	647	0.141	Bushing	12	31-Dec-10

Page 28 of/de 40

Environment Environnement Canada

			140	647	0.082	Bushing	7	31-Dec-12
Hollow Bridge Hydro	1919 Black River Road White Rock	6V	140	647	0.082	Bushing	7	31-Dec-12
Kentville	Exibition Street, Kentville	652V	140	647	0.082	Bushing	7	31-Dec-14
Kingston	430 Markland Road, Kingston	63V	360	647	0.212	Bushing	18	31-Dec-11
Lequille Hydro	470 Dugway Road, Lequille	12V	360	647	0.212	Bushing	18	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-13
			140	647	0.082	Bushing	7	31-Dec-14
			300	647	0.177	PT	3	31-Dec-12
Little Brook Wind Turbine	44-17-68N 66-05-08W	94V	120	647	0.071	Bushing	6	31-Dec-10
Lumsden Hydro	2607 Black River Road, White Rock	5V	60	647	0.035	Bushing	3	31-Dec-10
			300	647	0.177	CT	3	31-Dec-10
			80	647	0.047	Bushing	4	31-Dec-14
Maitland Bridge	1023 Northfield Road, Maitland Bridge	76V	120	647	0.071	Bushing	6	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-14
Methals Hydro	1628 Methal's Road, White Rock	7V	20	647	0.012	Bushing	1	31-Dec-10
			120	647	0.071	Bushing	6	31-Dec-13

Page 29 of/de 40

Environment Environnement

Michelin Waterville	866 Randolph Road, Waterville	92V	240	647	0.141	Bushing	12	31-Dec-10
			300	647	0.177	PT	3	31-Dec-10
			100	647	0.059	CVT	1	31-Dec-12
			100	647	0.059	CVT	1	31-Dec-14
Middleton Rural	201 Nictaux Road, Middleton	65V	140	647	0.082	Bushing	7	31-Dec-11
			360	647	0.212	Bushing	18	31-Dec-13
Minas Basin Pulp and Power	51 Williams Street, Hantsport	41V	120	647	0.071	Bushing	6	31-Dec-12
Mobile 4P	not applicable	4P	220	647	0.130	Bushing	11	31-Dec-13
Mount Pleasant Wind Turbine	44-38-20N 65-48-16W	95V	120	647	0.071	Bushing	6	31-Dec-10
New Minas	30 Minas Warehouse Road, New Minas	22V	480	647	0.283	Bushing	24	31-Dec-11
			240	647	0.141	Bushing	12	31-Dec-12
			280	647	0.165	Bushing	14	31-Dec-14
Nictaux	33 Torbrook Road, Nictaux	10V	140	647	0.082	Bushing	7	31-Dec-14
Paradise Hydro	5002 Hwy 201 Paradise	11V	600	647	0.353	Breaker	3	31-Dec-10
			100	647	0.059	PT	1	31-Dec-10
Research Station	Hwy #1 Kentville	654V	140	647	0.082	Bushing	7	31-Dec-10

Page 30 of/de 40

Environment Environnement

Ridge Hydro	660 Ridge Road,	14V	140	647	0.082	Bushing	7	31-Dec-13
Ruge Hyuro	Greenland	14 V	140	047	0.002	Busining	Ĩ	31-Dec-13
Saulnierville	255 Saulnierville Road	93V	140	647	0.082	Bushing	7	31-Dec-10
			240	647	0.141	Bushing	12	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
Sissiboo Hydro	2525 Weymouth Falls Road, Weymouyh Falls	15V	240	647	0.141	Bushing	12	31-Dec-13
			380	647	0.224	Bushing	19	31-Dec-14
			100	647	0.059	CVT	1	31-Dec-13
St Croix	110 Salmon Hole Dam Road, St. Croix	17V	680	647	0.400	Bushing	34	31-Dec-10
			5	647	0.003	Cap Bank	1	31-Dec-10
			200	647	0.118	СТ	2	31-Dec-10
			700	647	0.412	PT	7	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-13
			400	647	0.236	СТ	4	31-Dec-13
			100	647	0.059	CVT	1	31-Dec-11
Three Mile Plains	80 Mountain Road, Three Mile Plains	79V	360	647	0.212	Bushing	18	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-14
Tremont	986 Meadowvale Road, Lot A, Tremont	51V	40	647	0.024	Bushing	2	31-Dec-10
			300	647	0.177	PT	3	31-Dec-10
			260	647	0.153	Bushing	13	31-Dec-12

Page 31 of/de 40

Environment Environnement Canada Canada

Cana	da Canada		· · · · · · · · · · · · · · · · · · ·					
			160	647	0.094	Bushing	8	31-Dec-13
			100	647	0.059	СТ	1	31-Dec-12
			300	647	0.177	PT	3	31-Dec-11
			100	647	0.059	PT	1	31-Dec-14
Upper Burlington	63 North River Road, Upper Burlington	18V	360	647	0.212	Bushing	18	31-Dec-11
Waterville	5382 Hwy 1 Waterville	55V	620	647	0.365	Bushing	31	31-Dec-13
			140	647	0.082	Bushing	7	31-Dec-14
Weymouth	46 Pulp Mill Road, Weymouth	16V	360	647	0.212	Bushing	18	31-Dec-10
			280	647	0.165	Bushing	14	31-Dec-13
			280	647	0.165	Bushing	14	31-Dec-14
White Rock	3486 Black River Road, White Rock	4V	120	647	0.071	Bushing	6	31-Dec-12
Wolfville Ridge	1582 Ridge Road, Wolfville	83V	360	647	0.212	Bushing	18	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-12
West Regior	n - South Shore							
Auburndale	584 Auburndale (Wileville)	73W	380	647	0.224	Bushing	19	31-Dec-12
Barrington Passage	3672 Hwy 3, Barrington	22W	120	647	0.071	Bushing	6	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			260	647	0.153	Bushing	13	31-Dec-13

Page 32 of/de 40

Environment Environnement

Big Falls	117 Fish Hatchery	3W	500	647	0.294	Bushing	25	31-Dec-10
No. 3 Hydro	Road, Milton					_		
			400	647	0.236	PT	4	31-Dec-10
			60	647	0.035	Bushing	3	31-Dec-12
			40	647	0.024	Bushing	2	31-Dec-14
			100	647	0.059	PT	1	31-Dec-11
Bridgewater 230/138/69 <v< td=""><td>1627 King St., Bridgewater</td><td>99W</td><td>320</td><td>647</td><td>0.188</td><td>Bushing</td><td>16</td><td>31-Dec-10</td></v<>	1627 King St., Bridgewater	99W	320	647	0.188	Bushing	16	31-Dec-10
			800	647	0.471	СТ	8	31-Dec-10
			200	647	0.118	CVT	2	31-Dec-10
			200	647	0.118	Bushing	10	31-Dec-14
			200	647	0.118	СТ	2	31-Dec-13
			300	647	0.177	PT	3	31-Dec-11
			400	647	0.236	St. Service TRN	2	31-Dec-14
Bridgewater East	2259 Hwy 325, Oakhill	89W	120	647	0.071	Bushing	6	31-Dec-10
			360	647	0.212	Bushing	18	31-Dec-12
Bridgewater High Street	59 High Street, Bridgewater	70W	480	647	0.283	Bushing	24	31-Dec-10
			240	647	0.141	Bushing	12	31-Dec-11
			240	647	0.141	Bushing	12	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-14
Broad River	7906 Hwy 103, Broad	46W	140	647	0.082	Bushing	7	31-Dec-11

Page 33 of/de 40

Environment Environnement Canada Canada

Cana					I			l
	River							
			240	647	0.141	Bushing	12	31-Dec-12
Caledonia	9723 Hwy 8, Caledonia	57W	240	647	0.141	Bushing	12	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-13
			300	647	0.177	СТ	3	31-Dec-13
Carleton Yarmouth	3663 Hwy 340	92W	120	647	0.071	Bushing	6	31-Dec-10
			260	647	0.153	Bushing	13	31-Dec-11
Central Argyle	5092 Hwy 3, Argyle	19W	60	647	0.035	Bushing	3	31-Dec-10
			80	647	0.047	Bushing	4	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			120	647	0.071	Bushing	6	31-Dec-13
Clyde River	99 Quinns Falls	23W	240	647	0.141	Bushing	12	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-13
Cowie Falls No. 6 Hydro	556 Main Street, Hwy 8, Milton	6W	60	647	0.035	Bushing	3	31-Dec-10
			60	647	0.035	Bushing	3	31-Dec-11
Deep Brook No. 5 Hydro	236 River Road, Milton	5W	40	647	0.024	Bushing	2	31-Dec-10
			80	647	0.047	Bushing	4	31-Dec-12
Green Harbour	3919 Hwy 3, East Green Harbour	36W	120	647	0.071	Bushing	6	31-Dec-12
			260	647	0.153	Bushing	13	31-Dec-13

Page 34 of/de 40

Harmony Hydro	69 McGowan Lake Road, Westfield	7W	120	647	0.071	Bushing	6	31-Dec-14
Hebron	222 Hwy 3, Hebron	16W	120	647	0.071	Bushing	6	31-Dec-12
			120	647	0.071	Bushing	6	31-Dec-13
Hubbards	389 Mill Lake Road	87W	120	647	0.071	Bushing	6	31-Dec-11
			240	647	0.141	Bushing	12	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-14
			200	647	0.118	СТ	2	31-Dec-12
Indian Path	628 Indian Path Road	80W	180	647	0.106	Bushing	9	31-Dec-10
			120	647	0.071	Bushing	6	31-Dec-12
			120	647	0.071	Bushing	6	31-Dec-13
			80	647	0.047	Bushing	4	31-Dec-14
King Street	12 King Street, Yarmouth	11W	360	647	0.212	Bushing	18	31-Dec-10
			200	647	0.118	Bushing	10	31-Dec-11
Lockeport	48 Upper Water Street, Lockeport	37W	120	647	0.071	Bushing	6	31-Dec-11
			240	647	0.141	Bushing	12	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-13
Lower East Pubnico	250 Hwy 3, Lower East Pubnico	20W	260	647	0.153	Bushing	13	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			300	647	0.177	СТ	3	31-Dec-11

Page 35 of/de 40

1.5		
	100	
	1.1	

Environment Environnement Canada

Cana			, , , , , , , , , , , , , , , , , , ,	1				
Lower Wood's Harbour	6466 Hwy 3, Lower Woods Harbour	21W	140	647	0.082	Bushing	7	31-Dec-11
Mahone Bay Sub&Tap	60 School Street, Mahone Bay	76W	140	647	0.082	Bushing	7	31-Dec-14
Martins Brook	110 Schnare's Crossing Road, Fauxburg	78W	240	647	0.141	Bushing	12	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-14
Middlefield Distribution	4595 Hwy 8, Middlefield	91W	60	647	0.035	Bushing	3	31-Dec-10
			120	647	0.071	Bushing	6	31-Dec-12
			80	647	0.047	Bushing	4	31-Dec-13
Milton	638 Main Street, Hwy 8, Milton	50W	120	647	0.071	Bushing	6	31-Dec-10
			300	647	0.177	СТ	3	31-Dec-10
			300	647	0.177	CVT	3	31-Dec-10
			300	647	0.177	PT	3	31-Dec-10
			360	647	0.212	Bushing	18	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			560	647	0.330	Bushing	28	31-Dec-13
			400	647	0.236	PT	4	31-Dec-11
			300	647	0.177	PT	3	31-Dec-12
			300	647	0.177	PT	3	31-Dec-14
Mobile 2P	not applicable	2P	80	647	0.047	Bushing	4	31-Dec-10

Page 36 of/de 40

			80	647	0.047	Bushing	4	31-Dec-11
Ohio Road Shelburne	261 Ohio Road, Shelburne	25W	500	647	0.294	Bushing	25	31-Dec-11
Pleasant Street Yarmouth	245 Pleasant Street, Yarmouth	88W	480	647	0.283	Bushing	24	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
Robinson Corner	4426 Hwy 3, Marriotts Cove	84W	240	647	0.141	Bushing	12	31-Dec-10
			140	647	0.082	Bushing	7	31-Dec-14
Souriquois	939 Woodlawn Drive	30W	300	647	0.177	PT	3	31-Dec-10
			240	647	0.141	Bushing	12	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			160	647	0.094	Bushing	8	31-Dec-14
			300	647	0.177	СТ	3	31-Dec-11
			100	647	0.059	CVT	1	31-Dec-14
			400	647	0.236	PT	4	31-Dec-12
Tusket Distribution	8658 Hwy 3, Tusket	102W	120	647	0.071	Bushing	6	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-12
			140	647	0.082	Bushing	7	31-Dec-14
Tusket Gas Turbine	8658 Hwy 3, Tusket	10W	140	647	0.082	Bushing	7	31-Dec-11

Page 37 of/de 40

Tusket	da Canada 51 Bennies Lane,	9W	120	647	0.071	Bushing	6	31-Dec-10
Hydro & SW STA		377	120		0.071	Dusining		
			300	647	0.177	PT	3	31-Dec-10
			240	647	0.141	Bushing	12	31-Dec-11
			380	647	0.224	Bushing	19	31-Dec-12
			480	647	0.283	Bushing	24	31-Dec-13
			320	647	0.188	Bushing	16	31-Dec-14
			5	647	0.003	Cap Bank	1	31-Dec-11
			100	647	0.059	CVT	1	31-Dec-14
			400	647	0.236	PT	4	31-Dec-11
			100	647	0.059	PT	1	31-Dec-14
Upper Lake Falls No.1 Hydro	4347 River Road, Milton	1 W	60	647	0.035	Bushing	3	31-Dec-10
Waterloo Street	278 Waterloo Street, Liverpool	48W	220	647	0.130	Bushing	11	31-Dec-14
Westhavers Elbow	1090 Hwy 325, Maitland	75W	320	647	0.188	Bushing	16	31-Dec-11
			120	647	0.071	Bushing	6	31-Dec-13
			600	647	0.353	СТ	6	31-Dec-11
			100	647	0.059	CVT	1	31-Dec-14
			600	647	0.353	PT	6	31-Dec-11
2183 Gotting	jen Street							

Page 38 of/de 40

NA	2183 Gottingen Street, Halifax	CS431-341- 8903F4247- 019	110	647	0.065	Transformer		31-Dec-10
NA	2183 Gottingen Street, Halifax	CS431-341- 8903F4247- 028	110	647	0.065	Transformer	1	31-Dec-10
NA	2183 Gottingen Street, Halifax	CS431-341- 8903F4247- 062	110	647	0.065	Transformer	1	31-Dec-10
Totals	L		157775		92.893		5194	

* An average PCB concentration of 647 mg/kg was used and is based on the PCB concentration of known PCB contaminated equipment.

** density = 0.91 kg/

Page 39 of/de 40

Environment Environnement Canada Canada

2016 ACE SBA IR-47 Attachment 1 Page 40 of 40

Page 40 of/de 40

2016 ACE SBA IR-47 Attachment 2 Page 1 of 2

NOVA SCOTIA

energy everywhere.

April 26, 2010

Ms. Carolyne Blain Director, Waste Reduction and Management Division Environment Canada 351 St. Joseph Boulevard, 14th floor Gatineau, Quebec K1A 0H3

Dear Ms. Blain

RE: NSPI Authorization to Extend the 2009 End of Use Date for PCB – File Number 09/062/EXT

Nova Scotia Power Incorporated (NSPI) has received Environment Canada's authorization to extend the December 31, 2009 end of use date for specific potential PCB equipment. The equipment included in the authorization is located in substations in such a way that makes it extremely impractical to easily or immediately isolate and test substation electrical equipment. In addition, the equipment that must be tested and potentially replaced is engineered to order and typically requires six to twelve month lead time to procure.

The authorization provided by Environment Canada assigned end of use dates based on our PCB testing plan. With a total of 5194 units to test and the ongoing realities of our business operations, some adjustments in the exact testing times will be required. Therefore, NSPI is requesting a modification to the authorization issued by Environment Canada to allow a planned replacement of any equipment confirmed to contain a PCB concentration of 500 mg/kg or more by December 31, 2014.

NSPI is requesting that the authorization includes a required testing date (slightly adjusted annually to deal with real world circumstances encountered) and a final end of use date of December 31, 2014 as indicated in the table below.

Number of Pieces of Equipment	Testing Date	End of Use date
1144	December 31, 2010	December 31, 2014
1063	December 31, 2011	December 31, 2014
992	December 31, 2012	December 31, 2014
990	December 31, 2013	December 31, 2014
1005	December 31, 2014	December 31, 2014
Total - 5194		

Nova Scotia Power PO Box 910 Halifax, Nova Scotia Canada B3J 2W5 Customer Service 1.800.428.6230 (428.6230 in HRM)

nspower.ca

2016 ACE SBA IR-47 Attachment 2 Page 2 of 2

NOVA SCOTIA POWER An Emera Company energy ever

NSPI would update the actual status of testing and replacement on an annual basis as required by the process. This modified plan will sufficiently demonstrate significant progress towards a December 31, 2014 end of use date and will allow flexibility to test equipment and procure replacement equipment.

We are available to further discuss this request and/or answer any related questions you may have. You can contact me at (902) 428-6744 or email at terry.toner@nspower.ca.

Sincerely, DAAAA

Terry Toner Director, Environmental Services

Nova Scotia Power PO Box 910 Halifax, Nova Scotia Canada B3J 2W5 Customer Service 1.800.428.6230 (428.6230 in HRM)

......

nspower.ca

2016 ACE SBA IR-47 Attachment 3 Page 1 of 1

Total Number of items to be sampled

Device Type	Total Devices
Breaker	9
Bushing	271
СТ	6
CVT	2
Light Ballast	1
Pole Top Transformer	109
РТ	24
Recloser	17
Regulator	1
St. Service TRN	12
Station Service Transformer	1
Transformer	12
Grand Total	465

Yearly Sampling Expected

	Total Expected Number of
Year	Devices to be Sampled
2016	59
2017	58
2018	58
2019	58
2020	58
2021	58
2022	58
2023	58
Grand Total	465

2016 ACE SBA IR-47 Attachment 4 Page 1 of 1

Total Number of items to be Replaced

Device Type	Total to Replace
Breaker	96
Bushing (Breaker)	11
Bushing (Transformer)	304
СТ	3
CVT	6
Pole Top Transformer	2
РТ	17
St. Service TRN	1
Tapchanger	1
Transformer	2
Grand Total	443

Yearly Replacement Expected

	Total Expected Number of
Year	Devices to be Replaced
2016	56
2017	56
2018	56
2019	55
2020	55
2021	55
2022	55
2023	55
Grand Total	443

Equipment Region	Substation Location	Device ID	Voltage	Main Tank Bushing #1	Bushing #2	Bushing #3	Bushing #4	Bushing #5	Bushing #6
Breaker Sydney	Point Tupper	1C-680	138kv	<1	79	72 Sample Port Siezed	79	78	3 70
Breaker Sydney	Point Tupper	1C-685	138kv	<1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Sydney	Point Tupper	1C-687	138kv	<1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Sydney	Point Tupper	1C-689	138kv	1	440 Sample Port Siezed	Sample Port Siezed		Sample Port Siezed	Sample Port Siezed
Breaker Sydney	Point Tupper	1C-690	138kv	8 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Sydney	Point Tupper	1C-691	138kv	1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Sydney	Port Hastings	2C-643 2C-648	138kv 138kv	Replaced in 2015 Replaced in 2015	Replaced in 2015	Replaced in 2015 Replaced in 2015	Replaced in 2015	Replaced in 2015	Replaced in 2015
Breaker Sydney	Port Hastings Victoria Junction	2C-648 2S-500	138KV 69kv	Replaced in 2015 Replaced in 2015	Replaced in 2015 180	260 2	Replaced in 2015 30 240	Replaced in 2015	Replaced in 2015
Breaker Sydney Breaker Sydney	Victoria Junction	2S-501	69kv	2	77		35 77	1	
Breaker Sydney	Victoria Junction	25-502	69kv	3	310		50 250	4	
Breaker Sydney	Victoria Junction	2S-502 2S-503	69kv	1	73		78 78	4	
Breaker Sydney	Victoria Junction	2S-504	69kv	13	300	380 3			
Breaker Sydney	Victoria Junction	2S-505	69kv	<1	39		20 340	1	
Breaker Sydney	Victoria Junction	2S-506	69kv	1	68		64	71	
Breaker Sydney	Victoria Junction	2S-513	69kv	8	67		72 71	1	
Breaker Sydney	Victoria Junction	2S-531	69kv	<1	290		400	300	
Breaker Sydney	Victoria Junction	2S-532	69kv	<1	240	310 1	50 250	240	250
Breaker Sydney	Victoria Junction	2S-600	138kv	<1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Sydney	Victoria Junction	2S-601	138kv	<1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	120	Sample Port Siezed
Breaker Sydney	Victoria Junction	2S-602	138kv	<1 Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample
Breaker Sydney	Victoria Junction	2S-603	138kv	<1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Sydney	Victoria Junction	2S-604	138kv	<1 Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample
Breaker Sydney	Victoria Junction	2S-607	138kv	<1 Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample
Breaker Sydney	Victoria Junction	2S-608	138kv	<1 Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample
Breaker Sydney	Gannon Road	3S-517	69kv	5	61		.3 61	44	8.8
Breaker Sydney	Gannon Road	3S-518	69kv	13	74		71 72		67
Breaker Sydney	Gannon Road	3S-523	69kv	4	60	65	50 82	. 72	64
Breaker Sydney	Gannon Road	3S-628	138kv	<1 Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample
Breaker Sydney	Gannon Road	3S-629	138kv	<1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Sydney	New Page	47C-673	138kv	<1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Sydney	New Page	47C-674	138kv	<1 Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample
Breaker Sydney	New Page	47C-675	138kv	15 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Sydney	Glen Tosh	5S-604	138kv	<1	20	22 Sample Port Siezed	20	21	21
Breaker Sydney	Glen Tosh	5S-606	138kv	<1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Sydney	Glen Tosh	5S-607	138kv	<1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Sydney	Glen Tosh	5S-608	138kv	<1 Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample
Breaker Sydney	Whycocomagh	67C-559	69kv	<1	62		17 60		
Breaker Northe		1N-521	69kv	3	82		78 77		
Breaker Northe		1N-522	69kv	3	74		83		
Breaker Northe		30N-548	69kv	<1	65		61		
Breaker Northe		30N-549	69kv	<1	350		320		
Breaker Northe		4C-532	69kv	<1	75		31 75		
Breaker Northe		4C-533	69kv	<1 formula Dant Garant	84		73 76		
Breaker Northe		4C-620	138kv 138kv	1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed		Sample Port Siezed	Sample Port Siezed
Breaker Northe		4C-621 4C-622	138kv 138kv	1	110 140	110 1 150 1	110 110 30 210		
Breaker Northe Breaker Northe		4C-622 4C-623	138kv 138kv		200			Sample Port Siezed	130
Breaker Northe		4C-623 50N-500	138KV 69kv	<	75		79 81	- · ·	
Breaker Northe	v	50N-505	69kv	<	240		10 230	4	
Breaker Northe		50N-505	69kv	31	51		51 250	4	
Breaker Northe	, i i i i i i i i i i i i i i i i i i i	50N-606	138kv	5 Sample Port Siezed			98 100		
Breaker Northe	, i i i i i i i i i i i i i i i i i i i	50N-612	138kv	<1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed		Sample Port Siezed	Sample Port Siezed
Breaker Northe	v	50N-612	138kv	6	51		93 96		84
Breaker Northe		74N-512	69kv	<1	340		00 310		
Breaker Northe		74N-512	138kv	<1 Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample
Breaker Northe		74N-636	138kv	<1 Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample
Breaker Northe		96H-512	69kv	<1	210		270		
Breaker Northe	· · · ·		69kv	Could Not Sample Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample
Breaker Metro	Lakeside	103H - 563	69kv	<1	10		52 53		64
Breaker Metro	Kempt Road	104H - 600	138kv	<1 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Metro	Sackville	90H - 501	69kv	<1	190	210 2			
Breaker Metro	Sackville	90H - 503	69kv	<1 Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample	Could Not Sample
Breaker Metro	Sackville	90H - 506	69kv	<1	83		10 250		
Breaker Metro	Sackville	90H - 601	138kv	<1	320	310 3			
Breaker Metro	Sackville	90H - 602	138kv	<1	400 Sample Port Siezed		0 Sample Port Siezed	Sample Port Siezed	Sample Port Siezed
Breaker Metro	Sackville	90H - 603	138kv	<1	380	400 Sample Port Siezed	400		
Breaker Metro	Sackville	90H - 604	138kv	<1	54		50 59	4	
				·		· · · · · · · · · · · · · · · · · · ·			

2016 ACE SBA IR-47 Attachment 5 Page 1 of 2

Equipment	Region	Substation Location	Device ID	Voltage	Main Tank	Bushing #1	Bushing #2	Bushing #3	Bushing #4	Bushing #5	Bushing #6
Breaker	Metro	Sackville	90H - 605	138kv	<1	150	160	160	150	160	170
Breaker	Metro	Sackville	90H - 606	138kv	<1	100	100	110	120	110	140
Breaker	Metro	Sackville	90H - 607	138kv	<1	47	49	51	50	52	53
Breaker	Metro	Tufts Cove	91H-608	138kv	<1	Sample Port Siezed					
Breaker	Metro	Tufts Cove	91H-609	138kv	<1	Could Not Sample, Replaced in 2015					
Breaker	Metro	Farrell Street	99H-506	69kv	<1	270	260	260	260	260	260
Breaker	Metro	Farrell Street	99H-510	69kv	<1	Could Not Sample					
Breaker	Metro	Farrell Street	99H-513	69kv	<1	67	43	41	78	79	New Bushing
Breaker	Metro	Farrell Street	99H-514	69kv	1	190	200	200	200	200	210
Breaker	West	Souriquois	30W-507	69kv	<1	Could Not Sample					
Breaker	West	Souriquois	30W-508	69kv	<1	420	440	450	420	480	430
Breaker	West	Big Falls No. 3 Hydro	3W-502	69kv	1	380	370	370	350	370	340
Breaker	West	Big Falls No. 3 Hydro	3W-504	69kv	5	360	360	340	340	330	330
Breaker	West	Big Falls No. 3 Hydro	3W-511	69kv	2	2 220	230	230	210	220	230
Breaker	West	Milton	50W-500	69kv	<1	62	60	50	47	51	47
Breaker	West	Milton	50W-512	69kv	<1	50	54	50	51	48	48
Breaker	West	Milton	50W-600	138kv	<1	56	51	50	49	50	49
Breaker	West	Westhavers Elbow	75W-502	69kv	<1	No Sample Port					
Breaker	West	Tusket Hydro & SW STA	9W-500	69kv	<1	67	68	62	70	68	69
Breaker	West	Tusket Hydro & SW STA	9W-501	69kv	<1	410	370	470	370	480	360
Breaker	West	Tusket Hydro & SW STA	9W-511	69kv	<1	85	250	100	220	250	
Breaker	West	Tusket Hydro & SW STA	9W-513	69kv	1	420	540	540	450	470	490
Breaker	West	Tusket Hydro & SW STA	9W-514	69kv	<1	81	86	88	80	72	82
Breaker	West	Tusket Hydro & SW STA	9W-515	69kv	<1	78	510	110	490	440	440
Breaker	West	Tusket Hydro & SW STA	9W-516	69kv	<1	62				68	-
Breaker	West	Tusket Hydro & SW STA	9W-517	69kv	2	2 220	200	220	210	210	210
Breaker	West	Tusket Hydro & SW STA	9W-563	69kv	1	310	280	360	320	340	330
Breaker	Valley	Sissiboo	15V-550	69kv	Replaced in 2015	Replaced in 2015	Replaced in 2015	Replaced in 2015	Replaced in 2015	Replaced in 2015	Replaced in 2015
Breaker	Valley	Weymouth	16V-554	69kv	<1	73	72	91	75	81	88
Breaker	Valley	St Croix	17V-512	69kv	<1	62	62	61	62	59	6
Breaker	Valley	Canaan Road	43V - 504	69kv	<1	25	26	24	88	78	70
Breaker	Valley	Tremont	51V - 521	69kv	<1	70	79	74	72	69	76

2016 ACE SBA IR-47 Attachment 5 Page 2 of 2

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

CONFIDENTIAL (Attachment Only)

1	Reque	Request IR-48:								
2										
3	Refer	ence CI# 48114, 2016 Steel Tower Life Extension - HRM								
4										
5	(a)	Please provide the analysis conducted that concluded to "the most cost effective								
6		approach is to recoat the steel towers" as described on page 828 of Exhibit N-1.								
7										
8	(b)	Provide documentation that describes the process for deciding how to extend a								
9		particular steel structure lifespan. How does NPSI decide whether to recoat or to								
10		install sacrificial anodes when it seeks to extend the lifespan of a particular steel								
11		structure?								
12										
13	Respo	Response IR-48:								
14										
15	(a)	Please refer to Attachment 1.								
16										
17	(b)	The corrosion mitigation measures that are chosen for a particular steel structure are not								
18		mutually exclusive - a particular steel tower may require both recoating and sacrificial								
19		anodes. The decision to recoat and/or install sacrificial anodes on a tower depends on the								
20		location of the identified or potential corrosion. Recoating is used to protect steel towers								
21		against any corrosion above ground level and sacrificial anodes are used to protect steel								
22		towers against any corrosion below ground level. Please refer to Confidential								
23		Attachment 2 for an explanation of why sacrificial anodes are not typically used to								
24		protect above grade steel against corrosion. Please refer to Confidential Attachment 3 for								
25		an explanation how sacrificial anodes protect below grade steel against corrosion. Please								
26		refer to Confidential Attachment 4 for an explanation of the decision to recoat certain								
27		steel transmission structures.								

2016 SBA IR-48 Attachment 1 Page 1 of 4 2013 ACE SBA IR-94 Attachment 3 Page 1 of 4

Steel Tower Painting Summary of Alternatives

Division :	Technical & Construction Services	Date :	19-Dec-12
Department :	T&D Engineering	CI Number:	43490
Originator :		Project No. :	

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Recoat Steel Towers	6.48%	-148,914	1	#NUM!	0.0 years
в	Replace Steel Towers	6.48%	-215,611	2	-10.96%	0.0 years
	0	NA	NA	NA	#VALUE!	#VALUE!
	0	NA	NA	NA	#VALUE!	#VALUE!

Recommendation :

Recoat towers to extend the life of the tower

Notes/Comments :

Recoat Steel Towers

Assume that the tower life is extended 10 years because of the painting (a conservative estimate). Assumed that the tower is currently 35 years old with a standard life of 50 years (extended if recoated). Assume the average cost to apply protective coating is \$70,000 and average cost to replace a tower is approximately \$500,000.

Replace Steel Towers

Assume no preventative work and tower needs to be replaced after 50 years. Assume that the tower is currently 35 years old. Average cost to replace a tower is approximately \$500,000.

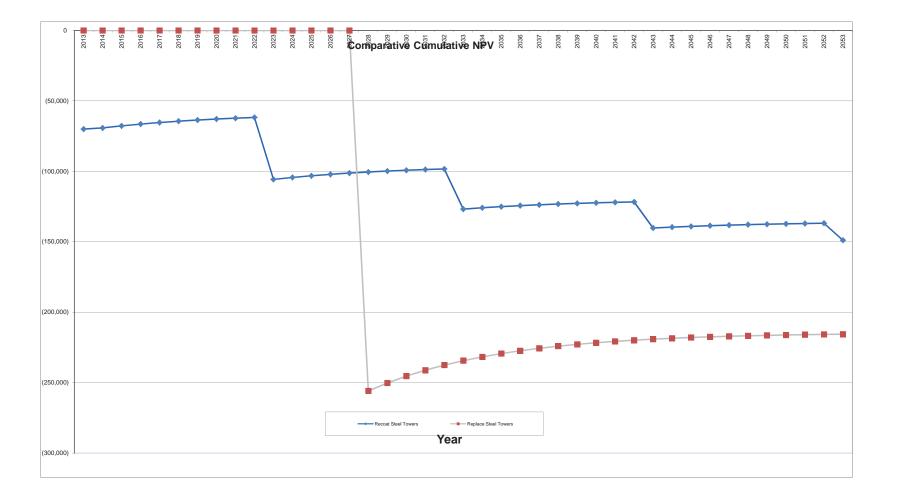
0

0

2016 SBA IR-48 Attachment 1 Page 2 of 4 2013 ACE SBA IR-94 Attachment 3 Page 2 of 4

Steel Tower Painting

Recoat Stee Year		erating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	PV of CF	Discount Factor	CNPV
2013	Total Revenue Op	erating Costs	(70,000.0)		000	(70,000.0)		(70,000.0)	(70,000.000)	Discount Factor	(70,000.0)
2013	-	-	(70,000.0)	- 2,800.0	- 67,200.0	(70,000.0)	- 868.0	(70,000.0) 868.0	(70,000.000) 815.177	0.9	
	-	-	-		,	-				0.9	(69,184.8)
2015	-	-	-	5,376.0	61,824.0	-	1,666.6	1,666.6	1,469.890		(67,714.9)
2016	-	-	-	4,945.9	56,878.1	-	1,533.2	1,533.2	1,270.003	0.8	(66,444.9)
2017	-	-	-	4,550.2	52,327.8	-	1,410.6	1,410.6	1,097.298	0.8	(65,347.6)
2018	-	-	-	4,186.2	48,141.6	-	1,297.7	1,297.7	948.078	0.7	(64,399.6)
2019	-	-	-	3,851.3	44,290.3	-	1,193.9	1,193.9	819.151	0.7	(63,580.4)
2020	-	-	-	3,543.2	40,747.1	-	1,098.4	1,098.4	707.756	0.6	(62,872.6)
2021	-	-	-	3,259.8	37,487.3	-	1,010.5	1,010.5	611.510	0.6	(62,261.1)
2022	-	-	-	2,999.0	34,488.3	-	929.7	929.7	528.352	0.6	(61,732.8)
2023	-	-	(85,329.6)	9,585.4	110,232.5	(85,329.6)	2,971.5	(82,358.1)	(43,956.796)	0.5	(105,689.6)
2024	-	-	-	8,818.6	101,413.9	-	2,733.8	2,733.8	1,370.291	0.5	(104,319.3)
2025	-	-	-	8,113.1	93,300.8	-	2,515.1	2,515.1	1,183.948	0.5	(103,135.3)
2026	-	-	-	7,464.1	85,836.7	-	2,313.9	2,313.9	1,022.945	0.4	(102,112.4)
2027	-	-	-	6,866.9	78,969.8	-	2,128.8	2,128.8	883.837	0.4	(101,228.6)
2028	-	-	-	6,317.6	72,652.2	-	1,958.5	1,958.5	763.646	0.4	(100,464.9)
2029	-	-	-	5,812.2	66,840.0	-	1,801.8	1,801.8	659.799	0.4	(99,805.1)
2030	-	-	-	5,347.2	61,492.8	-	1,657.6	1,657.6	570.074	0.3	(99,235.0)
2031	-	-	-	4,919.4	56,573.4	-	1,525.0	1,525.0	492.551	0.3	(98,742.5)
2032	-	-	-	4,525.9	52,047.5	-	1,403.0	1,403.0	425.570	0.3	(98,316.9)
2033	-	-	(104,016.3)	12,485.1	143,578.7	(104,016.3)	3,870.4	(100,145.9)	(28,528.075)	0.3	(126,845.0)
2034	-	-	-	11,486.3	132,092.4	-	3,560.8	3,560.8	952.605	0.3	(125,892.4)
2035	-	-	-	10,567.4	121,525.0	-	3,275.9	3,275.9	823.062	0.3	(125,069.3)
2036	-	-	-	9,722.0	111,803.0	-	3,013.8	3,013.8	711.136	0.2	(124,358.2)
2037	-	-	-	8,944.2	102,858.8	-	2,772.7	2,772.7	614.430	0.2	(123,743.8)
2038	-	-	-	8,228.7	94,630.1	-	2,550.9	2,550.9	530.875	0.2	(123,212.9)
2039	-	-	-	7,570.4	87,059.7	-	2,346.8	2,346.8	458.682	0.2	(122,754.2)
2040	-	-	-	6,964.8	80,094.9	-	2,159.1	2,159.1	396.307	0.2	(122,357.9)
2041	-	-	-	6,407.6	73,687.3	-	1,986.4	1,986.4	342.414	0.2	(122,015.5)
2042	-	-	-	5,895.0	67,792.3	-	1,827.4	1,827.4	295.850	0.2	(121,719.6)
2043	-	-	(126,795.3)	15,567.0	179,020.6	(126,795.3)	4,825.8	(121,969.5)	(18,544.285)	0.2	(140,263.9)
2044	-	-	-	14,321.7	164,699.0	-	4,439.7	4,439.7	633.936	0.1	(139,630.0)
2045	-	-	-	13,175.9	151,523.1	-	4,084.5	4,084.5	547.728	0.1	(139,082.3)
2046	-	-	-	12,121.8	139,401.2	-	3,757.8	3,757.8	473.244	0.1	(138,609.0)
2047	-	-	-	11,152.1	128,249.1	-	3,457.2	3,457.2	408.888	0.1	(138,200.1)
2048	-	-	-	10,259.9	117,989.2	-	3,180.6	3,180.6	353.284	0.1	(137,846.8)
2049	-	-	-	9,439.1	108,550.1	-	2,926.1	2,926.1	305.242	0.1	(137,541.6)
2050	-	-	-	8,684.0	99,866.0	-	2,692.0	2,692.0	263.733	0.1	(137,277.9)
2051	-	-	-	7,989.3	91,876.8	-	2,476.7	2,476.7	227.868	0.1	(137,050.0)
2052	-	-	-	7,350.1	84,526.6	-	2,278.5	2,278.5	196.881	0.1	(136,853.1)
2053	-	-	(154,562.8)	19,127.2	219,962.2	(154,562.8)	5,929.4	(148,633.4)	(12,061.313)	0.1	(148,914.4)
otal		-	(540,704.0)	320,741.8		(540,704.0)	99,429.9	(441,274.1)	(148,914.4)		


2016 SBA IR-48 Attachment 1 Page 3 of 4 2013 ACE SBA IR-94 Attachment 3 Page 3 of 4

Steel Tower Painting

Replace Steel Towers

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	PV of CF	Discount Factor	CNPV
2013	-	-	-	-	-	-	-	-	-	1.0	-
2014	-	-	-	-	-	-	-	-	-	0.9	-
2015	-	-	-	-	-	-	-	-	-	0.9	-
2016	-	-	-	-	-	-	-	-	-	0.8	-
2017	-	-	-	-	-	-	-	-	-	0.8	-
2018	-	-	-	-	-	-	-	-	-	0.7	-
2019	-	-	-	-	-	-	-	-	-	0.7	-
2020	-	-	-	-	-	-	-	-	-	0.6	-
2021	-	-	-	-	-	-	-	-	-	0.6	-
2022	-	-	-	-	-	-	-	-	-	0.6	-
2023	-	-	-	-	-	-	-	-	-	0.5	-
2024	-	-	-	-	-	-	-	-	-	0.5	-
2025	-	-	-	-	-	-	-	-	-	0.5	-
2026	-	-	-	-	-	-	-	-	-	0.4	-
2027	-	-	-	-	-	-	-	-	-	0.4	-
2028	-	-	(672,934.2)	53,834.7	619,099.4	(672,934.2)	16,688.8	(656,245.4)	(255,885.476)	0.4	(255,885.5
2029	-	-	-	49,528.0	569,571.5	-	15,353.7	15,353.7	5,622.422	0.4	(250,263.1
2030	-	-	-	45,565.7	524,005.8	-	14,125.4	14,125.4	4,857.840	0.3	(245,405.2
2031	-	-	-	41,920.5	482,085.3	-	12,995.3	12,995.3	4,197.232	0.3	(241,208.0
2032	-	-	-	38,566.8	443,518.5	-	11,955.7	11,955.7	3,626.459	0.3	(237,581.5
2033	-	-	-	35,481.5	408,037.0	-	10,999.3	10,999.3	3,133.304	0.3	(234,448.2
2034	-	-	-	32,643.0	375,394.0	-	10,119.3	10,119.3	2,707.212	0.3	(231,741.0
2035	-	-	-	30,031.5	345,362.5	-	9,309.8	9,309.8	2,339.064	0.3	(229,401.9
2036	-	-	-	27,629.0	317,733.5	-	8,565.0	8,565.0	2,020.979	0.2	(227,381.0
2037	-	-	-	25,418.7	292,314.8	-	7,879.8	7,879.8	1,746.151	0.2	(225,634.8
2038	-	-	-	23,385.2	268,929.6	-	7,249.4	7,249.4	1,508.695	0.2	(224,126.1
2039	-	-	-	21,514.4	247,415.3	-	6,669.5	6,669.5	1,303.531	0.2	(222,822.0
2040	-	-	-	19,793.2	227,622.1	-	6,135.9	6,135.9	1,126.266	0.2	(221,696.3
2041	-	-	-	18,209.8	209,412.3	-	5,645.0	5,645.0	973.108	0.2	(220,723.2
2042	-	-	-	16,753.0	192,659.3	-	5,193.4	5,193.4	840.777	0.2	(219,882.4
2043	-	-	-	15,412.7	177,246.6	-	4,778.0	4,778.0	726.441	0.2	(219,156.0
2044	-	-	-	14,179.7	163,066.8	-	4,395.7	4,395.7	627.654	0.1	(218,528.3
2045	-	-	-	13,045.3	150,021.5	-	4,044.1	4,044.1	542.300	0.1	(217,986.0
2046	-	-	-	12,001.7	138,019.8	-	3,720.5	3,720.5	468.554	0.1	(217,517.5
2047	-	-	-	11,041.6	126,978.2	-	3,422.9	3,422.9	404.836	0.1	(217,112.7
2048	-	-	-	10,158.3	116,819.9	-	3,149.1	3,149.1	349.784	0.1	(216,762.9
2049	-	-	-	9,345.6	107,474.3	-	2,897.1	2,897.1	302.217	0.1	(216,460.7
2050	-	-	-	8,597.9	98,876.4	-	2,665.4	2,665.4	261.119	0.1	(216,199.5
2051	-	-	-	7,910.1	90,966.3	-	2,452.1	2,452.1	225.610	0.1	(215,973.9
2052	-	-	-	7,277.3	83,689.0	-	2,256.0	2,256.0	194.930	0.1	(215,779.0
2053	-	-	-	6,695.1	76,993.9	-	2,075.5	2,075.5	168.422	0.1	(215,610.6
Total		-	(672,934.2)	595,940.3	,	(672,934.2)	184,741.5	(488,192.7)	(215,610.6)	2	

2016 SBA IR-48 Attachment 1 Page 4 of 4 2013 ACE SBA IR-94 Attachment 3 Page 4 of 4

SBA IR-48 Attachments 2, 3 and 4 have been removed due to confidentiality.

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

1	Reque	est IR-49:
2		
3	Refer	ence CI# 48059, 2016/2017 Transmission Switch & Breaker Replacements
4		
5	(a)	Please provide the instances in the last 3 years where the x69kV Breakers and
6		2x138kV Breakers failed.
7		
8	(b)	Provide a copy of the Switch & Breaker program documentation as described on
9		page 847 of Exhibit N-1.
10		
11	Respo	nse IR-49:
12		
13	(a)	69kV and 138kV Breaker failures over the last 3 years are identified in the table below:
14		
		Device Voltage (kV) Year

Device	Voltage (kV)	Year
74N-619	138	2013
91W-503	69	2014
2S-511	69	2014
51V-519	69	2014
4C-533	69	2015
3S-629	138	2015
2C-643	138	2015
91H-609	138	2015

15

(b) The program noted in CI 48059 is a collection of capital projects that are submitted
annually to replace deteriorated or failed breakers and switches. The number of breakers
and switches scheduled for replacement each year is dependent on the risk profile of
these asset classes. The switches and breakers are ranked by risk based on a number of
condition and criticality parameters:

- 21
- Maintenance History
- 23 Age

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

NON-CONFIDENTIAL

1	•	Operations Count
2	•	Testing Results
3	•	Design
4	•	Inspection Results
5	•	Number of Customers Served
6	•	Equipment Redundancy
7	•	System Impact
8	•	Safety & Environment

2016 Annual Capital Expenditure Plan (NSUARB P-128.16/M07176) NSPI Responses to Small Business Advocate Information Requests

REDACTED

1	Reque	st IR-50:
2		
3	Refere	ence CI# 47721, 2016 PCB Phase – out for Pole transformer
4		
5	(a)	On page 865 of Exhibit N-1, NSPI states the following: "The 2016 project has an
6		increased focused (sic) on identification of PCB containing transformers through
7		sampling, enabling the development of a strategic replacement plan." Please provide
8		the strategic replacement plan documentation.
9		
10	(b)	Please provide documentation that confirms "The amount of testing as part of the
11		2016 program has been accelerated in order to take advantage of approximately
12		15% savings in the cost of testing" denoted on page 865 of the ACE Plan application
13		(Exhibit N-1).
14		
15	Respon	nse IR-50:
16		
17	(a)	Targeted transformers are in the process of being sampled and tested. The strategic
18		replacement plan for 2016 is being developed as oil testing results are received. The
19		strategy is based on distributing the 10,000 targeted transformers for 2016 across the
20		entire province, based on customer counts and resource availability. Sampling and
21		testing results are reviewed on a regular basis to ensure the strategy will result in
22		compliance to the regulatory requirement to have all equipment containing PCBs in
23		concentrations at or above 50 mg/kg out of service by December 31, 2025.
24		
25	(b)	A significant portion of the cost associated with transformer PCB testing is the patented
26		rivet that is used to seal the hole made in the transformer to extract the oil sample. The
27		initial quote provided by the rivet supplier was \$/unit. The cost per rivet was
28		negotiated down to \$ /unit based on current year and future year volumes (per
29		year) of transformer testing. Please refer to costing scenario 3 in Partially Confidential
30		Attachment 1, and Partially Confidential Attachment 2.

REDACTED 2016 ACE SBA IR-50 Attachment 1 Page 1 of 1

May 27, 2015

To:

Sent via e-mail

Nova Scotia Power PO Box 910 Halifax, NS Canada B3J 2W5 Attention: Jill Peterson, Eli Sparks and Kathryn Richardson

From: Jaco Environmental Systems LTD.

10 – 6874 52nd Avenue Red Deer, AB T4N 4L1, Canada Email: Jamie@jacolinecontractors.com and/or Christina@jacolinecontractors.com

Reference: Three Costing Senerios for Nova Scotia Power

 Jaco conducts the work at a set cost of down as follows: per transformer additional cost break

Unit Price Category	Work Activity	Unit Price (CDN \$)
A	Mobilizing Fees one way	\$
В	Testing per unit cost which includes Jaco providing Traffic Control	\$

2. Jaco supplies the patented rivet, and patent tools for temporary rental use by the Nova Scotia Hydro Authority and Competent Training is provided by JACO.

Costs	Per Hour Price (CDN \$)				
Rivet Costs	= \$ per Rivet (min of)				
Tool Costs (Set reference see below)	= \$ per set/ per month				
Noodle Costs (syringe sampler)	= \$				
Supply Shipping Costs	= Cost plus 15%				
Training	= 0 for the 1 st class arrangement training session,				
	\$ per class arrangement for any additional				
	separate training sessions				
Expenses plus 15% to provide training	= Cost plus 15% (flights, accomadations, meals, etc.				

Set consists of: Drill Stick, Punch Stick, Silicone Stick, Noodle Sample Stick and Rivet Setter Note: Signed, Legal, Confidentiality expectation for intellectual property rental agreement will be required for senerio 2.

3. Nova Scotia Power to purchase rivets per year @ //ivet and associated costs listed in point 2 would be included with no additional costs for the duration of your project aprox units. Maintenance and up keep of the sticks will be handled in training and supplies provided by Jaco. Ownership of all intellectual and physical property remains with Jaco. This offer applies to only Nova Scotia Power in Nova Scotia, no competition clause will apply.

REDACTED 2016 ACE SBA IR-50 Attachment 2 Page 1 of 4

Nova Scotia POVER An Emera Company VENDOR JACO ENVIRONMENTAL SYSTEMS LTD	PURCHASE (ORDER	Purchase Order No. 285721 SHIP TO: NOVA SC C/O: BELL, Ms. 25 Lakeside Indu Lakeside Indu LAKESIDE,NS D Canada	0 COTIA POWER INC. GENOA MARINA Park Drive ustrial Park B3T 1M9	Page 1
10 6874 52 AVENUE RED DEER,AB T4N 4L1			C/O ACCOUNTS PO BOX 910 HALIFAX,NS B Canada		
DATE OF ORDER/BUYER L GATES 24-SEP-15			AYMENT TERMS NET 35		TERNAL
ITEM PART NUMBER / D	F.O.B. DESTINATION ESCRIPTION	FREIGHT TERMS	PREPAID QUANTITY UNIT	(403) 344 UNIT PRICE	8-5572 EXTENSION
All prices and amounts on Transformer Oil Sampling H o SHIP TO: Address at top of page	Program	PROMISED: 31-DEC-15	ian dollar		
unless specifically excepted above. ** REFERENCE THE PURCHASE ORDER All amounts of Harmonized Sales Tax separately on each invoice along with	or Goods and Services Tax must be shown your Tax Registration Number. s order is classified as a "Controlled Product", a	ion	BUYER COPY	TOTAL Linda Lit AUTHORIZED SIG	tes) NATURE

1.0 Definitions:

In this PO, the following terms have the following meanings where the context permits or requires:

- (a) "Goods" includes machinery, equipment, goods, materials, supplies, drawings and other property specified by NSPI in this PO.
- (b) "NSPI" means Nova Scotia Power Incorporated, its successors and assigns.
- (c) "**PO**" means this agreement/purchase order and any additional terms or conditions attached hereto.
- (d) "Seller" means the persons, and/or corporations to which this PO is addressed and each of their respective heirs, personal representatives, successors and permitted assigns.
- (e) "Services" means any and all services provided by the Seller to NSPI under this PO.

2.0 Entire Agreement:

This PO and any confidentiality agreement(s) entered into between NSPI and the Seller represents the entire agreement between the parties with reference to its subject matter. No modification or amendment shall be binding on either party unless consented to in writing by both parties. Each party agrees that it has not relied on any representations of the other party not contained in this PO. The terms and conditions of this PO shall supercede and abrogate all previous communications, commitments or agreements between the parties, unless a formal written agreement has been entered into between the parties.

3.0 Packaging:

NSPI will not pay any additional charges for boxing, crating, or packing, except by special agreement with the Seller.

4.0 Shipment:

Delivery must be made on the date(s) specified herein. If the Seller fails to make deliveries in accordance with this PO, NSPI may at its option terminate this PO in whole or in part and return (at the Seller's expense) or refuse to accept the Goods. Quantities received by NSPI in excess of quantities specified may, at the option of NSPI, be returned at Seller's expense.

Services must be performed by the date(s) specified herein. If the Seller fails to perform the Services in accordance with this Purchase Order, NSPI may at its option terminate this Purchase Order in whole or in part.

5.0 Inspections:

Goods are subject to inspection by NSPI. If NSPI determines that the Goods are not in accordance with specifications accompanying the PO, they may be rejected by NSPI and returned at NSPI's discretion. If inspection discloses defective Goods, or Goods of an inferior quality or workmanship, NSPI, at its option, may cancel any unshipped Goods and return the Goods at the Seller's expense.

NSPI reserves the right to appoint its own inspector, at NSPI's cost, to inspect, examine and witness all tests on Goods. At all times, the Seller shall co-operate with NSPI's inspector.

Inspection or lack of inspection does not relieve the Seller of the Seller's obligations (including warranties) under this PO.

6.0 Title:

Title to the Goods and risk of loss shall pass from the Seller to NSPI upon delivery to and acceptance by NSPI.

7.0 Intellectual Property:

The Seller acknowledges and agrees that all contributions made in the course of provision of the Services, and namely the works, work product, drawings, innovations, discoveries, inventions or realizations, as well as their adaptation or modification, whether they be protected or not under any applicable law, entirely and solely belong to NSPI when made, conceived, created, realized or implemented by the Seller. The Seller, in advance, assigns and transfers to NSPI all right, title and interest to said contributions and work product and agrees, at NSPI's request, to execute any documentation required to effect such transfer.

Nothing contained herein shall be construed as limiting or depriving the Seller of its right to use the general knowledge, know-how and skills developed during the provision of the Services, provided that the Seller shall remain subject to any continuing confidentiality obligations to NSPI.

REDACTED 2016 ACE SBA IR-50 Attachment 2 Page 2 of 4

8.0 Price & Payment:

Unless otherwise stated, all prices stated are in Canadian dollars. Payment shall be made net 35 days from receipt of invoice by NSPI. NSPI is not responsible for any interest or carrying charges unless consented to in writing by NSPI. The Seller will not permit any lien or charge to attach to the Goods or to any of NSPI's property or premises. If a lien or charge is attached, the Seller will promptly procure its release, and hold NSPI harmless from all loss, cost, damage or expense incidental thereto. All payments by NSPI to the Seller hereunder will be in accordance with, and subject to, all applicable laws, including holdback requirements under Builders' Lien Act (Nova Scotia).

9.0 Taxes and Duties:

Unless otherwise stated in this PO, the Seller will pay, and indemnify NSPI against all sales and commodities taxes, goods and services taxes, withholding taxes, customs duties, excise taxes, export and/or import tariffs and fees and any similar taxes, levies, assessments, tariffs or fees.

10.0 Indemnities:

The Seller shall at all times indemnify and save harmless NSPI all loss, costs, charges, damages, expenses (including legal fees), damages, claims and demands whatsoever that NSPI may incur by reason of:

- (i) Personal injury, death, loss or damage to property arising out of, in the course of, or in any way connected with the performance of this PO but excluding any such injury, death, loss, or damage to the extent that same is caused by the negligence or willful act or omission of NSPI; or
- (ii) any claim by a third party(s) that possession or use by NSPI of any intellectual property delivered as a part of or in connection with the Goods or Services infringes any patent, copyright, trade secret or other intellectual property right.

The Seller, at his own cost, risk, and expense, will defend any and all actions, suits, or other legal proceedings that may be brought against NSPI for any such claim or demand and satisfy any judgment that may be rendered against NSPI in any such action, suit, or other legal proceedings.

Except for the Seller's obligations to indemnify NSPI neither NSPI nor the Seller shall be liable to the other for any consequential, special, incidental, multiple, exemplary or punitive damages for performance or non-performance under this PO.

11.0 Warranty:

Seller warrants that all Goods are of good, sufficient and merchantable quality, fit for the purpose or purposes specified and are free from any defect in design, material, workmanship or title. The Seller, at NSPI's request, will either promptly replace or repair at the Seller's expense any defective or damaged Goods which, in NSPI's opinion, fail to comply with specifications or requirements under this PO or NSPI may, at its option and on reasonable notice to the Seller, correct such default, failure or damage and the Seller is liable to NSPI for all costs incurred in doing so. Neither payment for nor inspection, testing or acceptance of any Goods by NSPI excludes or limits any warranties hereunder or implied by law. The Seller will assign to NSPI, or enforce for NSPI's benefit, any warranties obtained from manufacturers or subcontractors. All warranties continue in full force and effect notwithstanding any termination of this PO. Unless set out otherwise herein, warranties with respect to the supply and/or installation of Goods will expire twelve (12) months from receipt by NSPI of such Goods. Should any Goods, or part thereof, be repaired, or replaced the warranty obligations of Seller under this PO shall extend to all such repairs or replacements.

The Seller warrants that all Services performed shall be performed in a professional and workmanlike manner using personnel with the skills and training appropriate for the assigned tasks and using equipment that is appropriate for the purpose for which it is supplied and functioning properly. Seller further warrants that it shall re-perform Services which are found to have been in breach of the foregoing warranties for a period of twelve (12) months following completion of the Service.

Except as otherwise provided herein, the foregoing warranties are exclusive and are in lieu of all other warranties and guarantees whether written, oral, implied or statutory. NO IMPLIED STATUTORY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE SHALL APPLY.

12.0 Default:

NSPI may immediately terminate this PO if: (i) the Seller breaches a material term of this PO; or (ii) the Seller is insolvent, declared bankrupt, seeks the benefit of any insolvency legislation, or if a receiver is appointed in respect of the Seller or over a portion of the Seller's assets. Upon such termination, NSPI is relieved of all further obligation hereunder. The Seller is liable to NSPI for all costs, expenses and/or damages (including legal fees) incurred by NSPI in completing or procuring the completion of this PO in excess of the purchase price.

13.0 Termination:

This PO may be terminated by NSPI, in whole or in part, by thirty (30) days prior written notice to the Seller for any reason subject to an equitable adjustment between the parties for work or materials supplied up to the date of termination. Such adjustment does not apply to Goods which are Seller's standard stock. The Seller is not entitled to any compensation or damages for any direct or indirect damage, loss, prospective profits, economic loss or incidental or consequential damages as a result of such termination. Immediately upon receipt of such termination notice, the Seller will discontinue all work under this PO and make every effort to cancel orders or contracts that have been made. Any claim for adjustment by the Seller must be asserted within thirty (30) days from the date of termination.

14.0 Insurance:

The Seller shall maintain the following insurance coverage for the duration of the **19.0** General: PO: (i) Comprehensive General Liability insurance with limits of not less than \$2,000,000 per occurrence for bodily injury or death, and \$2,000,000 per occurrence property damage plus contractual liability coverage; (ii) automobile liability insurance: \$2,000,000 per occurrence; and, if applicable, (iii) environmental impairment liability: \$2,000,000 per occurrence. NSPI shall be named as an additional insured on the Seller's insurance policy(s). Upon request, the Seller shall provide NSPI with certificates of insurance satisfactory to NSPI evidencing that the foregoing insurance has been obtained.

15.0 Dispute Resolution:

In the event of a dispute in connection with this PO, a senior officer of the Seller and a senior officer of NSPI shall meet to discuss and resolve the dispute and the parties shall have ten (10) days to resolve the dispute (or five (5) days if either party notifies the other party that the matter requires urgent resolution). In the event resolution cannot be achieved then such dispute or difference shall be referred to arbitration under the provisions of the Commercial Arbitration Act of Nova Scotia. Unless otherwise requested by NSPI, there shall be no stoppage in the provision of Goods or Services during any dispute resolution process.

16.0 Compliance with Laws:

The Seller shall comply with all statutory and legal requirements within the Province of Nova Scotia necessary for the performance of this PO by the Seller as well as all NSPI safety policies.

17.0 Force Majeure:

Neither the Seller nor NSPI shall be liable for any failure to comply with this Agreement to the extent that and for as long as such failure is caused by a Force Majeure Event. "Force Majeure Event" means any event or circumstance not reasonably within the control of, or not caused in whole or part by the negligence of, the party affected which wholly or partly prevents the performance by that party of its obligations under this PO, provided that such party is in good faith unable to perform such obligations by any commercially reasonable substitute means. Force Majeure Events include acts of God, war, riot, fire, explosion, flood, hurricane, acts of governmental authorities or acts of terrorism. Dates of delivery and/or performance may be extended by a period equal to the time actually lost by reason of a Force Majeure Event; provided, however that any deliveries and/or performance delayed or not made for reasons of Force Majeure Event may be suspended, reduced or cancelled by NSPI without any cost or obligation to NSPI. The party claiming a Force Majeure Event must give written notice to the other party within two (2) days of becoming aware of the Force Majeure Event and must also use commercially reasonably efforts to remedy the condition that prevents performance and to mitigate the effect of the same in order to continue to perform its obligations under hereunder.

REDACTED 2016 ACE SBA IR-50 Attachment 2 Page 3 of 4

18.0 Confidentiality:

The Seller and NSPI (as to information disclosed, the "Disclosing Party") may each provide the other party (as to information received, the "Receiving Party") with "Confidential Information." "Confidential Information" shall mean all the terms of this PO, all information about the Goods or Services and all information related to the business or products of the Disclosing Party that is not generally known to the public. The obligations of this Article shall not apply to any portion of the Confidential Information which: (i) is or becomes generally available to the public other than as a result of disclosure by the Receiving Party, or (ii) is or becomes available to the Receiving Party or on a non-confidential basis from a source other than the Disclosing Party, or (iii) has been or is subsequently independently developed by the Receiving Party without reference to the Confidential Information, or (iv) which the Receiving Party is required to disclose by law or a regulatory body with regulatory responsibility over the Receiving Party.

The Receiving Party agrees to: (i) use the Confidential Information only in connection with this transaction and permitted uses of the Goods and Services, (ii) not use, reveal, release, disclose or divulge the Confidential Information in any form whatsoever to any person or publish in any manner whatsoever, other than as permitted hereby, unless it has the prior written consent of the Disclosing Party; and (iii) to safeguard the Confidential Information from unauthorized disclosure.

- (a) This PO shall be construed in accordance with the laws in force in the Province of Nova Scotia, Canada and the federal laws of Canada applicable therein. The parties agree to attorn to the jurisdiction of the Courts of Nova Scotia.
- (b) This PO shall enure to the benefit of and be binding upon the parties and their respective successors and permitted assigns. The Seller will not assign or otherwise transfer this PO or any part hereof without NSPI's prior written consent, which may be unreasonably withheld by NSPI.
- (c) Any failure by NSPI at any time or from time to time to enforce or require the strict keeping and performance of any of the terms or conditions of the PO shall not constitute a waiver of such terms or conditions. NSPI may at any time avail itself of such remedies as it may have for any breach of such terms or conditions.
- (d) If any section or part or parts of sections in this PO are determined to be illegal or unenforceable, it or they shall be considered separate and severed from this PO and the remaining provisions of this PO shall remain in full force and effect and shall be binding upon the parties hereto as if such section or sections or part or parts of the sections had never been included.
- (e) Section headings used herein are for the convenience only and shall not be construed so as to affect the interpretation or construction of this Agreement.
- (f) In this PO, words importing the singular include the plural and vice versa and words importing a specific gender include all genders.
- (g) The words "includes" or "including" shall mean "includes without limitation" or "including without limitation", respectively.
- (h) In the event there is more than one Seller, all obligations of Seller hereunder are joint and several.
- (i) All provisions of this PO which by their express terms or nature are continuing shall survive the expiration or termination of this PO, including this provision, and any provisions relating to notice, confidentiality, indemnification, termination, intellectual property, dispute resolution, as well as any provisions which are required to determine, or which exclude or limit, any liability or which are otherwise required to give effect to or interpret any such provisions which are continuing.

REDACTED 2016 ACE SBA IR-50 Attachment 2 Page 4 of 4

Environmental Statement

Nova Scotia Power is committed to conducting business activities in a manner which is respectful and protective of the environment, and strives for continual improvement of its environmental management systems. Contractors and suppliers are encouraged to help Nova Scotia Power identify opportunities to enhance environmental initiatives through use of appropriate products or services.

It is vital to Nova Scotia Power, our customers and our stakeholders, that contractors and suppliers understand our commitment to the environment and to adhere to company standards. Contractors and suppliers are required to comply with applicable environmental laws and regulations and to adhere to best management practices wherever appropriate.

Nova Scotia Power encourages, but does not require, that Contractors or Suppliers explore opportunities to develop ISO 14001 equivalency with their environmental management systems.

To learn more about our environmental management systems, please contact us via our website: <u>www.nspower.ca</u>